Cargando…
Efficient gradient-based parameter estimation for dynamic models using qualitative data
MOTIVATION: Unknown parameters of dynamical models are commonly estimated from experimental data. However, while various efficient optimization and uncertainty analysis methods have been proposed for quantitative data, methods for qualitative data are rare and suffer from bad scaling and convergence...
Autores principales: | Schmiester, Leonard, Weindl, Daniel, Hasenauer, Jan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8652033/ https://www.ncbi.nlm.nih.gov/pubmed/34260697 http://dx.doi.org/10.1093/bioinformatics/btab512 |
Ejemplares similares
-
Parameterization of mechanistic models from qualitative data using an efficient optimal scaling approach
por: Schmiester, Leonard, et al.
Publicado: (2020) -
Efficient parameterization of large-scale dynamic models based on relative measurements
por: Schmiester, Leonard, et al.
Publicado: (2019) -
pyPESTO: a modular and scalable tool for parameter estimation for dynamic models
por: Schälte, Yannik, et al.
Publicado: (2023) -
Benchmarking optimization methods for parameter estimation in large kinetic models
por: Villaverde, Alejandro F, et al.
Publicado: (2019) -
Mini-batch optimization enables training of ODE models on large-scale datasets
por: Stapor, Paul, et al.
Publicado: (2022)