Cargando…
CNN-PepPred: an open-source tool to create convolutional NN models for the discovery of patterns in peptide sets—application to peptide–MHC class II binding prediction
SUMMARY: The ability to unveil binding patterns in peptide sets has important applications in several biomedical areas, including the development of vaccines. We present an open-source tool, CNN-PepPred, that uses convolutional neural networks to discover such patterns, along with its application to...
Autores principales: | Junet, Valentin, Daura, Xavier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8652105/ https://www.ncbi.nlm.nih.gov/pubmed/34601583 http://dx.doi.org/10.1093/bioinformatics/btab687 |
Ejemplares similares
-
SaLT&PepPr is an interface-predicting language model for designing peptide-guided protein degraders
por: Brixi, Garyk, et al.
Publicado: (2023) -
AmylPepPred: Amyloidogenic Peptide Prediction tool
por: Nair, Smitha Sunil Kumaran, et al.
Publicado: (2012) -
Thermodynamics of Peptide-MHC Class II Interactions: Not all Complexes are Created Equal
por: Ferrante, Andrea
Publicado: (2013) -
MHCAttnNet: predicting MHC-peptide bindings for MHC alleles classes I and II using an attention-based deep neural model
por: Venkatesh, Gopalakrishnan, et al.
Publicado: (2020) -
PepNN: a deep attention model for the identification of peptide binding sites
por: Abdin, Osama, et al.
Publicado: (2022)