Cargando…
Noise Robustness Low-Rank Learning Algorithm for Electroencephalogram Signal Classification
Electroencephalogram (EEG) is often used in clinical epilepsy treatment to monitor electrical signal changes in the brain of patients with epilepsy. With the development of signal processing and artificial intelligence technology, artificial intelligence classification method plays an important role...
Autores principales: | Gao, Ming, Liu, Runmin, Mao, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8652211/ https://www.ncbi.nlm.nih.gov/pubmed/34899177 http://dx.doi.org/10.3389/fnins.2021.797378 |
Ejemplares similares
-
Classification of motor imagery electroencephalogram signals by using adaptive cross-subject transfer learning
por: Feng, Jin, et al.
Publicado: (2022) -
Artificial Immune System–Negative Selection Classification Algorithm (NSCA) for Four Class Electroencephalogram (EEG) Signals
por: Rashid, Nasir, et al.
Publicado: (2018) -
Motor imagery electroencephalogram classification algorithm based on joint features in the spatial and frequency domains and instance transfer
por: Wang, Ximiao, et al.
Publicado: (2023) -
Feature optimization based on improved novel global harmony search algorithm for motor imagery electroencephalogram classification
por: Shi, Bin, et al.
Publicado: (2022) -
Electroencephalogram Signal Classification for Automated Epileptic Seizure Detection Using Genetic Algorithm
por: Nanthini, B. Suguna, et al.
Publicado: (2017)