Cargando…
MultiCapsNet: A General Framework for Data Integration and Interpretable Classification
The latest progresses of experimental biology have generated a large number of data with different formats and lengths. Deep learning is an ideal tool to deal with complex datasets, but its inherent “black box” nature needs more interpretability. At the same time, traditional interpretable machine l...
Autores principales: | Wang, Lifei, Miao, Xuexia, Nie, Rui, Zhang, Zhang, Zhang, Jiang, Cai, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8652257/ https://www.ncbi.nlm.nih.gov/pubmed/34899854 http://dx.doi.org/10.3389/fgene.2021.767602 |
Ejemplares similares
-
Corrigendum: MultiCapsNet: A General Framework for Data Integration and Interpretable Classification
por: Wang, Lifei, et al.
Publicado: (2022) -
scCapsNet-mask: an updated version of scCapsNet with extended applicability in functional analysis related to scRNA-seq data
por: Wang, Lifei, et al.
Publicado: (2022) -
MSU-Net: Multi-Scale U-Net for 2D Medical Image Segmentation
por: Su, Run, et al.
Publicado: (2021) -
Intelligent Classification of Japonica Rice Growth Duration (GD) Based on CapsNets
por: Zhao, Xin, et al.
Publicado: (2022) -
A novel CapsNet neural network based on MobileNetV2 structure for robot image classification
por: Zhang, Jingsi, et al.
Publicado: (2022)