Cargando…
CLARITY: comparing heterogeneous data using dissimilarity
Integrating datasets from different disciplines is hard because the data are often qualitatively different in meaning, scale and reliability. When two datasets describe the same entities, many scientific questions can be phrased around whether the (dis)similarities between entities are conserved acr...
Autores principales: | Lawson, Daniel J., Solanki, Vinesh, Yanovich, Igor, Dellert, Johannes, Ruck, Damian, Endicott, Phillip |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8652278/ https://www.ncbi.nlm.nih.gov/pubmed/34909208 http://dx.doi.org/10.1098/rsos.202182 |
Ejemplares similares
-
Classification and dissimilarity analysis
por: Cutsem, Bernard
Publicado: (1994) -
Cultural prerequisites of socioeconomic development
por: Ruck, Damian J., et al.
Publicado: (2020) -
Characterization of Mechanical Heterogeneity in Dissimilar Metal Welded Joints
por: Xue, He, et al.
Publicado: (2021) -
Pathways to clinical CLARITY: volumetric analysis of irregular, soft, and heterogeneous tissues in development and disease
por: Hsueh, Brian, et al.
Publicado: (2017) -
Topology of manifolds and varieties
por: Viro, Oleg Yanovich
Publicado: (1994)