Cargando…

Bias, Precision and Timeliness of Historical (Background) Rate Comparison Methods for Vaccine Safety Monitoring: An Empirical Multi-Database Analysis

Using real-world data and past vaccination data, we conducted a large-scale experiment to quantify bias, precision and timeliness of different study designs to estimate historical background (expected) compared to post-vaccination (observed) rates of safety events for several vaccines. We used negat...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Xintong, Lai, Lana YH, Ostropolets, Anna, Arshad, Faaizah, Tan, Eng Hooi, Casajust, Paula, Alshammari, Thamir M., Duarte-Salles, Talita, Minty, Evan P., Areia, Carlos, Pratt, Nicole, Ryan, Patrick B., Hripcsak, George, Suchard, Marc A., Schuemie, Martijn J., Prieto-Alhambra, Daniel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8652333/
https://www.ncbi.nlm.nih.gov/pubmed/34899334
http://dx.doi.org/10.3389/fphar.2021.773875
_version_ 1784611572467892224
author Li, Xintong
Lai, Lana YH
Ostropolets, Anna
Arshad, Faaizah
Tan, Eng Hooi
Casajust, Paula
Alshammari, Thamir M.
Duarte-Salles, Talita
Minty, Evan P.
Areia, Carlos
Pratt, Nicole
Ryan, Patrick B.
Hripcsak, George
Suchard, Marc A.
Schuemie, Martijn J.
Prieto-Alhambra, Daniel
author_facet Li, Xintong
Lai, Lana YH
Ostropolets, Anna
Arshad, Faaizah
Tan, Eng Hooi
Casajust, Paula
Alshammari, Thamir M.
Duarte-Salles, Talita
Minty, Evan P.
Areia, Carlos
Pratt, Nicole
Ryan, Patrick B.
Hripcsak, George
Suchard, Marc A.
Schuemie, Martijn J.
Prieto-Alhambra, Daniel
author_sort Li, Xintong
collection PubMed
description Using real-world data and past vaccination data, we conducted a large-scale experiment to quantify bias, precision and timeliness of different study designs to estimate historical background (expected) compared to post-vaccination (observed) rates of safety events for several vaccines. We used negative (not causally related) and positive control outcomes. The latter were synthetically generated true safety signals with incident rate ratios ranging from 1.5 to 4. Observed vs. expected analysis using within-database historical background rates is a sensitive but unspecific method for the identification of potential vaccine safety signals. Despite good discrimination, most analyses showed a tendency to overestimate risks, with 20%-100% type 1 error, but low (0% to 20%) type 2 error in the large databases included in our study. Efforts to improve the comparability of background and post-vaccine rates, including age-sex adjustment and anchoring background rates around a visit, reduced type 1 error and improved precision but residual systematic error persisted. Additionally, empirical calibration dramatically reduced type 1 to nominal but came at the cost of increasing type 2 error.
format Online
Article
Text
id pubmed-8652333
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-86523332021-12-09 Bias, Precision and Timeliness of Historical (Background) Rate Comparison Methods for Vaccine Safety Monitoring: An Empirical Multi-Database Analysis Li, Xintong Lai, Lana YH Ostropolets, Anna Arshad, Faaizah Tan, Eng Hooi Casajust, Paula Alshammari, Thamir M. Duarte-Salles, Talita Minty, Evan P. Areia, Carlos Pratt, Nicole Ryan, Patrick B. Hripcsak, George Suchard, Marc A. Schuemie, Martijn J. Prieto-Alhambra, Daniel Front Pharmacol Pharmacology Using real-world data and past vaccination data, we conducted a large-scale experiment to quantify bias, precision and timeliness of different study designs to estimate historical background (expected) compared to post-vaccination (observed) rates of safety events for several vaccines. We used negative (not causally related) and positive control outcomes. The latter were synthetically generated true safety signals with incident rate ratios ranging from 1.5 to 4. Observed vs. expected analysis using within-database historical background rates is a sensitive but unspecific method for the identification of potential vaccine safety signals. Despite good discrimination, most analyses showed a tendency to overestimate risks, with 20%-100% type 1 error, but low (0% to 20%) type 2 error in the large databases included in our study. Efforts to improve the comparability of background and post-vaccine rates, including age-sex adjustment and anchoring background rates around a visit, reduced type 1 error and improved precision but residual systematic error persisted. Additionally, empirical calibration dramatically reduced type 1 to nominal but came at the cost of increasing type 2 error. Frontiers Media S.A. 2021-11-24 /pmc/articles/PMC8652333/ /pubmed/34899334 http://dx.doi.org/10.3389/fphar.2021.773875 Text en Copyright © 2021 Li, Lai, Ostropolets, Arshad, Tan, Casajust, Alshammari, Duarte-Salles, Minty, Areia, Pratt, Ryan, Hripcsak, Suchard, Schuemie and Prieto-Alhambra. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Pharmacology
Li, Xintong
Lai, Lana YH
Ostropolets, Anna
Arshad, Faaizah
Tan, Eng Hooi
Casajust, Paula
Alshammari, Thamir M.
Duarte-Salles, Talita
Minty, Evan P.
Areia, Carlos
Pratt, Nicole
Ryan, Patrick B.
Hripcsak, George
Suchard, Marc A.
Schuemie, Martijn J.
Prieto-Alhambra, Daniel
Bias, Precision and Timeliness of Historical (Background) Rate Comparison Methods for Vaccine Safety Monitoring: An Empirical Multi-Database Analysis
title Bias, Precision and Timeliness of Historical (Background) Rate Comparison Methods for Vaccine Safety Monitoring: An Empirical Multi-Database Analysis
title_full Bias, Precision and Timeliness of Historical (Background) Rate Comparison Methods for Vaccine Safety Monitoring: An Empirical Multi-Database Analysis
title_fullStr Bias, Precision and Timeliness of Historical (Background) Rate Comparison Methods for Vaccine Safety Monitoring: An Empirical Multi-Database Analysis
title_full_unstemmed Bias, Precision and Timeliness of Historical (Background) Rate Comparison Methods for Vaccine Safety Monitoring: An Empirical Multi-Database Analysis
title_short Bias, Precision and Timeliness of Historical (Background) Rate Comparison Methods for Vaccine Safety Monitoring: An Empirical Multi-Database Analysis
title_sort bias, precision and timeliness of historical (background) rate comparison methods for vaccine safety monitoring: an empirical multi-database analysis
topic Pharmacology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8652333/
https://www.ncbi.nlm.nih.gov/pubmed/34899334
http://dx.doi.org/10.3389/fphar.2021.773875
work_keys_str_mv AT lixintong biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis
AT lailanayh biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis
AT ostropoletsanna biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis
AT arshadfaaizah biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis
AT tanenghooi biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis
AT casajustpaula biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis
AT alshammarithamirm biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis
AT duartesallestalita biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis
AT mintyevanp biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis
AT areiacarlos biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis
AT prattnicole biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis
AT ryanpatrickb biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis
AT hripcsakgeorge biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis
AT suchardmarca biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis
AT schuemiemartijnj biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis
AT prietoalhambradaniel biasprecisionandtimelinessofhistoricalbackgroundratecomparisonmethodsforvaccinesafetymonitoringanempiricalmultidatabaseanalysis