Cargando…
Machine Learning Classification of False-Positive Human Immunodeficiency Virus Screening Results
BACKGROUND: Human immunodeficiency virus (HIV) screening has improved significantly in the past decade as we have implemented tests that include antigen detection of p24. Incorporation of p24 detection narrows the window from 4 to 2 weeks between infection acquisition and ability to detect infection...
Autores principales: | Elkhadrawi, Mahmoud, Stevens, Bryan A, Wheeler, Bradley J, Akcakaya, Murat, Wheeler, Sarah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8652341/ https://www.ncbi.nlm.nih.gov/pubmed/34934521 http://dx.doi.org/10.4103/jpi.jpi_7_21 |
Ejemplares similares
-
Improving Lyme disease testing with data driven test design in pediatrics
por: Elkhadrawi, Mahmoud, et al.
Publicado: (2023) -
Reducing False-Positive Results in Newborn Screening Using Machine Learning
por: Peng, Gang, et al.
Publicado: (2020) -
Machine learning classification can reduce false positives in structure-based virtual screening
por: Adeshina, Yusuf O., et al.
Publicado: (2020) -
False-Positive Human Immunodeficiency Virus Results in COVID-19 Patients
por: Hakobyan, Narek, et al.
Publicado: (2023) -
False-Positive Human Immunodeficiency Virus Enzyme Immunoassay Results in Pregnant Women
por: Wesolowski, Laura G., et al.
Publicado: (2011)