Cargando…
A coarse‐refine segmentation network for COVID‐19 CT images
The rapid spread of the novel coronavirus disease 2019 (COVID‐19) causes a significant impact on public health. It is critical to diagnose COVID‐19 patients so that they can receive reasonable treatments quickly. The doctors can obtain a precise estimate of the infection's progression and decid...
Autores principales: | Huang, Ziwang, Li, Liang, Zhang, Xiang, Song, Ying, Chen, Jianwen, Zhao, Huiying, Chong, Yutian, Wu, Hejun, Yang, Yuedong, Shen, Jun, Zha, Yunfei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8653356/ https://www.ncbi.nlm.nih.gov/pubmed/34899976 http://dx.doi.org/10.1049/ipr2.12278 |
Ejemplares similares
-
Accurately Discriminating COVID-19 from Viral and Bacterial Pneumonia According to CT Images Via Deep Learning
por: Zheng, Fudan, et al.
Publicado: (2021) -
Label Cleaning Multiple Instance Learning: Refining Coarse Annotations on Single Whole-Slide Images
por: Wang, Zhenzhen, et al.
Publicado: (2022) -
Structure-aware protein solubility prediction from sequence through graph convolutional network and predicted contact map
por: Chen, Jianwen, et al.
Publicado: (2021) -
Fully automatic liver segmentation combining multi-dimensional graph cut with shape information in 3D CT images
por: Lu, Xuesong, et al.
Publicado: (2018) -
A coarse-to-fine approach to prostate boundary segmentation in ultrasound images
por: Sahba, Farhang, et al.
Publicado: (2005)