Cargando…
Enterobacter hormaechei in the intestines of housefly larvae promotes host growth by inhibiting harmful intestinal bacteria
BACKGROUND: As a pervasive insect that transmits a variety of pathogens to humans and animals, the housefly has abundant and diverse microbial communities in its intestines. These gut microbes play an important role in the biology of insects and form a symbiotic relationship with the host insect. Al...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8653583/ https://www.ncbi.nlm.nih.gov/pubmed/34876203 http://dx.doi.org/10.1186/s13071-021-05053-1 |
Sumario: | BACKGROUND: As a pervasive insect that transmits a variety of pathogens to humans and animals, the housefly has abundant and diverse microbial communities in its intestines. These gut microbes play an important role in the biology of insects and form a symbiotic relationship with the host insect. Alterations in the structure of the gut microbial community would affect larval development. Therefore, it is important to understand the mechanism regulating the influence of specific bacteria on the development of housefly larvae. METHODS: For this study we selected the intestinal symbiotic bacterium Enterobacter hormaechei, which is beneficial to the growth and development of housefly larvae, and used it as a probiotic supplement in larval feed. 16S rRNA gene sequencing technology was used to explore the effect of E. hormaechei on the intestinal flora of housefly larvae, and plate confrontation experiments were performed to study the interaction between E. hormaechei and intestinal microorganisms. RESULTS: The composition of the gut microflora of the larvae changed after the larvae were fed E. hormaechei, with the abundance of Pseudochrobactrum, Enterobacter and Vagococcus increasing and that of Klebsiella and Bacillus decreasing. Analysis of the structure and interaction of larval intestinal flora revealed that E. hormaechei inhibited the growth of harmful bacteria, such as Pseudomonas aeruginosa, Providencia stuartii and Providencia vermicola, and promoted the reproduction of beneficial bacteria. CONCLUSIONS: Our study has explored the influence of specific beneficial bacteria on the intestinal flora of houseflies. The results of this study reveal the important role played by specific beneficial bacteria on the development of housefly larvae and provide insight for the development of sustained biological agents for housefly control through interference of gut microbiota. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13071-021-05053-1. |
---|