Cargando…
Optimal dimensionality selection for independent component analysis of transcriptomic data
BACKGROUND: Independent component analysis is an unsupervised machine learning algorithm that separates a set of mixed signals into a set of statistically independent source signals. Applied to high-quality gene expression datasets, independent component analysis effectively reveals both the source...
Autores principales: | McConn, John Luke, Lamoureux, Cameron R., Poudel, Saugat, Palsson, Bernhard O., Sastry, Anand V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8653613/ https://www.ncbi.nlm.nih.gov/pubmed/34879815 http://dx.doi.org/10.1186/s12859-021-04497-7 |
Ejemplares similares
-
Independent component analysis recovers consistent regulatory signals from disparate datasets
por: Sastry, Anand V., et al.
Publicado: (2021) -
A multi-scale expression and regulation knowledge base for Escherichia coli
por: Lamoureux, Cameron R, et al.
Publicado: (2023) -
Machine Learning of All Mycobacterium tuberculosis H37Rv RNA-seq Data Reveals a Structured Interplay between Metabolism, Stress Response, and Infection
por: Yoo, Reo, et al.
Publicado: (2022) -
Machine Learning Uncovers a Data-Driven Transcriptional Regulatory Network for the Crenarchaeal Thermoacidophile Sulfolobus acidocaldarius
por: Chauhan, Siddharth M., et al.
Publicado: (2021) -
Machine learning uncovers the Pseudomonas syringae transcriptome in microbial communities and during infection
por: Bajpe, Heera, et al.
Publicado: (2023)