Cargando…
Identifying and evaluating clinical subtypes of Alzheimer’s disease in care electronic health records using unsupervised machine learning
BACKGROUND: Alzheimer’s disease (AD) is a highly heterogeneous disease with diverse trajectories and outcomes observed in clinical populations. Understanding this heterogeneity can enable better treatment, prognosis and disease management. Studies to date have mainly used imaging or cognition data a...
Autores principales: | Alexander, Nonie, Alexander, Daniel C., Barkhof, Frederik, Denaxas, Spiros |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8653614/ https://www.ncbi.nlm.nih.gov/pubmed/34879829 http://dx.doi.org/10.1186/s12911-021-01693-6 |
Ejemplares similares
-
ClustEHR: a tool for generating synthetic EHR data for unsupervised learning experiments.
por: Alexander, Nonie, et al.
Publicado: (2022) -
Identifying multiple sclerosis subtypes using unsupervised machine learning and MRI data
por: Eshaghi, Arman, et al.
Publicado: (2021) -
Author Correction: Identifying multiple sclerosis subtypes using unsupervised machine learning and MRI data
por: Eshaghi, Arman, et al.
Publicado: (2021) -
Unsupervised Machine Learning to Identify Depressive Subtypes
por: Kung, Benson, et al.
Publicado: (2022) -
Identifying subtypes of chronic kidney disease with machine learning: development, internal validation and prognostic validation using linked electronic health records in 350,067 individuals
por: Dashtban, Ashkan, et al.
Publicado: (2023)