Cargando…
A deep learning-based segmentation pipeline for profiling cellular morphodynamics using multiple types of live cell microscopy
To accurately segment cell edges and quantify cellular morphodynamics from live-cell imaging data, we developed a deep learning-based pipeline termed MARS-Net (multiple-microscopy-type-based accurate and robust segmentation network). MARS-Net utilizes transfer learning and data from multiple types o...
Autores principales: | Jang, Junbong, Wang, Chuangqi, Zhang, Xitong, Choi, Hee June, Pan, Xiang, Lin, Bolun, Yu, Yudong, Whittle, Carly, Ryan, Madison, Chen, Yenyu, Lee, Kwonmoo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8654120/ https://www.ncbi.nlm.nih.gov/pubmed/34888542 http://dx.doi.org/10.1016/j.crmeth.2021.100105 |
Ejemplares similares
-
Protocol for live cell image segmentation to profile cellular morphodynamics using MARS-Net
por: Jang, Junbong, et al.
Publicado: (2022) -
Emerging machine learning approaches to phenotyping cellular motility and morphodynamics
por: Choi, Hee June, et al.
Publicado: (2021) -
A machine learning pipeline revealing heterogeneous responses to drug perturbations on vascular smooth muscle cell spheroid morphology and formation
por: Vaidyanathan, Kalyanaraman, et al.
Publicado: (2021) -
Label-free optical interferometric microscopy to characterize morphodynamics in living plants
por: Ebrahimi, Samira, et al.
Publicado: (2023) -
Profiling cellular morphodynamics by spatiotemporal spectrum decomposition
por: Ma, Xiao, et al.
Publicado: (2018)