Cargando…
Deep Learning Recurrent Neural Network for Concussion Classification in Adolescents Using Raw Electroencephalography Signals: Toward a Minimal Number of Sensors
Artificial neural networks (ANNs) are showing increasing promise as decision support tools in medicine and particularly in neuroscience and neuroimaging. Recently, there has been increasing work on using neural networks to classify individuals with concussion using electroencephalography (EEG) data....
Autores principales: | Thanjavur, Karun, Hristopulos, Dionissios T., Babul, Arif, Yi, Kwang Moo, Virji-Babul, Naznin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8654150/ https://www.ncbi.nlm.nih.gov/pubmed/34899212 http://dx.doi.org/10.3389/fnhum.2021.734501 |
Ejemplares similares
-
Recurrent neural network-based acute concussion classifier using raw resting state EEG data
por: Thanjavur, Karun, et al.
Publicado: (2021) -
Disrupted Information Flow in Resting-State in Adolescents With Sports Related Concussion
por: Hristopulos, Dionissios T., et al.
Publicado: (2019) -
Stuck in a State of Inattention? Functional Hyperconnectivity as an Indicator of Disturbed Intrinsic Brain Dynamics in Adolescents With Concussion: A Pilot Study
por: Muller, Angela M., et al.
Publicado: (2018) -
Machine Learning for Subtyping Concussion Using a Clustering Approach
por: Rosenblatt, Cirelle K., et al.
Publicado: (2021) -
The Child Sport Concussion Assessment Tool (Child SCAT3): normative values and correspondence between child and parent symptom scores in male child athletes
por: Porter, Shaun, et al.
Publicado: (2015)