Cargando…
LIO-CSI: LiDAR inertial odometry with loop closure combined with semantic information
Accurate and reliable state estimation and mapping are the foundation of most autonomous driving systems. In recent years, researchers have focused on pose estimation through geometric feature matching. However, most of the works in the literature assume a static scenario. Moreover, a registration b...
Autores principales: | Wang, Gang, Gao, Saihang, Ding, Han, Zhang, Hao, Cai, Hongmin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8654169/ https://www.ncbi.nlm.nih.gov/pubmed/34879118 http://dx.doi.org/10.1371/journal.pone.0261053 |
Ejemplares similares
-
RTLIO: Real-Time LiDAR-Inertial Odometry and Mapping for UAVs
por: Yang, Jung-Cheng, et al.
Publicado: (2021) -
Tightly Coupled LiDAR-Inertial Odometry and Mapping for Underground Environments
por: Chen, Jianhong, et al.
Publicado: (2023) -
OMC-SLIO: Online Multiple Calibrations Spinning LiDAR Inertial Odometry
por: Wang, Shuang, et al.
Publicado: (2022) -
LiDAR Inertial Odometry Based on Indexed Point and Delayed Removal Strategy in Highly Dynamic Environments
por: Wu, Weizhuang, et al.
Publicado: (2023) -
Real-Time Lidar Odometry and Mapping with Loop Closure
por: Liu, Yonghui, et al.
Publicado: (2022)