Cargando…
A network-based method for predicting disease-associated enhancers
BACKGROUND: Enhancers regulate transcription of target genes, causing a change in expression level. Thus, the aberrant activity of enhancers can lead to diseases. To date, a large number of enhancers have been identified, yet a small portion of them have been found to be associated with diseases. Th...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8654176/ https://www.ncbi.nlm.nih.gov/pubmed/34879086 http://dx.doi.org/10.1371/journal.pone.0260432 |
_version_ | 1784611810564898816 |
---|---|
author | Le, Duc-Hau |
author_facet | Le, Duc-Hau |
author_sort | Le, Duc-Hau |
collection | PubMed |
description | BACKGROUND: Enhancers regulate transcription of target genes, causing a change in expression level. Thus, the aberrant activity of enhancers can lead to diseases. To date, a large number of enhancers have been identified, yet a small portion of them have been found to be associated with diseases. This raises a pressing need to develop computational methods to predict associations between diseases and enhancers. RESULTS: In this study, we assumed that enhancers sharing target genes could be associated with similar diseases to predict the association. Thus, we built an enhancer functional interaction network by connecting enhancers significantly sharing target genes, then developed a network diffusion method RWDisEnh, based on a random walk with restart algorithm, on networks of diseases and enhancers to globally measure the degree of the association between diseases and enhancers. RWDisEnh performed best when the disease similarities are integrated with the enhancer functional interaction network by known disease-enhancer associations in the form of a heterogeneous network of diseases and enhancers. It was also superior to another network diffusion method, i.e., PageRank with Priors, and a neighborhood-based one, i.e., MaxLink, which simply chooses the closest neighbors of known disease-associated enhancers. Finally, we showed that RWDisEnh could predict novel enhancers, which are either directly or indirectly associated with diseases. CONCLUSIONS: Taken together, RWDisEnh could be a potential method for predicting disease-enhancer associations. |
format | Online Article Text |
id | pubmed-8654176 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-86541762021-12-09 A network-based method for predicting disease-associated enhancers Le, Duc-Hau PLoS One Research Article BACKGROUND: Enhancers regulate transcription of target genes, causing a change in expression level. Thus, the aberrant activity of enhancers can lead to diseases. To date, a large number of enhancers have been identified, yet a small portion of them have been found to be associated with diseases. This raises a pressing need to develop computational methods to predict associations between diseases and enhancers. RESULTS: In this study, we assumed that enhancers sharing target genes could be associated with similar diseases to predict the association. Thus, we built an enhancer functional interaction network by connecting enhancers significantly sharing target genes, then developed a network diffusion method RWDisEnh, based on a random walk with restart algorithm, on networks of diseases and enhancers to globally measure the degree of the association between diseases and enhancers. RWDisEnh performed best when the disease similarities are integrated with the enhancer functional interaction network by known disease-enhancer associations in the form of a heterogeneous network of diseases and enhancers. It was also superior to another network diffusion method, i.e., PageRank with Priors, and a neighborhood-based one, i.e., MaxLink, which simply chooses the closest neighbors of known disease-associated enhancers. Finally, we showed that RWDisEnh could predict novel enhancers, which are either directly or indirectly associated with diseases. CONCLUSIONS: Taken together, RWDisEnh could be a potential method for predicting disease-enhancer associations. Public Library of Science 2021-12-08 /pmc/articles/PMC8654176/ /pubmed/34879086 http://dx.doi.org/10.1371/journal.pone.0260432 Text en © 2021 Duc-Hau Le https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Le, Duc-Hau A network-based method for predicting disease-associated enhancers |
title | A network-based method for predicting disease-associated enhancers |
title_full | A network-based method for predicting disease-associated enhancers |
title_fullStr | A network-based method for predicting disease-associated enhancers |
title_full_unstemmed | A network-based method for predicting disease-associated enhancers |
title_short | A network-based method for predicting disease-associated enhancers |
title_sort | network-based method for predicting disease-associated enhancers |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8654176/ https://www.ncbi.nlm.nih.gov/pubmed/34879086 http://dx.doi.org/10.1371/journal.pone.0260432 |
work_keys_str_mv | AT leduchau anetworkbasedmethodforpredictingdiseaseassociatedenhancers AT leduchau networkbasedmethodforpredictingdiseaseassociatedenhancers |