Cargando…

What Is the Comparison in Robot Time per Screw, Radiation Exposure, Robot Abandonment, Screw Accuracy, and Clinical Outcomes Between Percutaneous and Open Robot-Assisted Short Lumbar Fusion?: A Multicenter, Propensity-Matched Analysis of 310 Patients

Multicenter cohort. OBJECTIVE. To compare the robot time/screw, radiation exposure, robot abandonment, screw accuracy, and 90-day outcomes between robot-assisted percutaneous and robot-assisted open approach for short lumbar fusion (1- and 2-level). SUMMARY OF BACKGROUND DATA. There is conflicting l...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Nathan J., Buchanan, Ian A., Zuckermann, Scott L., Boddapati, Venkat, Mathew, Justin, Geiselmann, Matthew, Park, Paul J., Leung, Eric, Buchholz, Avery L., Khan, Asham, Mullin, Jeffrey, Pollina, John, Jazini, Ehsan, Haines, Colin, Schuler, Thomas C., Good, Christopher R., Lombardi, Joseph M., Lehman, Ronald A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8654274/
https://www.ncbi.nlm.nih.gov/pubmed/34091564
http://dx.doi.org/10.1097/BRS.0000000000004132
Descripción
Sumario:Multicenter cohort. OBJECTIVE. To compare the robot time/screw, radiation exposure, robot abandonment, screw accuracy, and 90-day outcomes between robot-assisted percutaneous and robot-assisted open approach for short lumbar fusion (1- and 2-level). SUMMARY OF BACKGROUND DATA. There is conflicting literature on the superiority of robot-assisted minimally invasive spine surgery to open techniques. A large, multicenter study is needed to further elucidate the outcomes and complications between these two approaches. METHODS. We included adult patients (≥18 yrs old) who underwent robot-assisted short lumbar fusion surgery from 2015 to 2019 at four independent institutions. A propensity score matching algorithm was employed to control for the potential selection bias between percutaneous and open surgery. The minimum follow-up was 90 days after the index surgery. RESULTS. After propensity score matching, 310 patients remained. The mean (standard deviation) Charlson comorbidity index was 1.6 (1.5) and 53% of patients were female. The most common diagnoses included high-grade spondylolisthesis (grade >2) (48%), degenerative disc disease (22%), and spinal stenosis (25%), and the mean number of instrumented levels was 1.5(0.5). The operative time was longer in the open (198 min) versus the percutaneous group (167 min, P value = 0.007). However, the robot time/screw was similar between cohorts (P value > 0.05). The fluoroscopy time/ screw for percutaneous (14.4 s) was longer than the open group (10.1 s, P value = 0.021). The rates for screw exchange and robot abandonment were similar between groups (P value > 0.05). The estimated blood loss (open: 146 mL vs. percutaneous: 61.3 mL, P value < 0.001) and transfusion rate (open: 3.9% vs. percutaneous: 0%, P value = 0.013) were greater for the open group. The 90-day complication rate and mean length of stay were not different between cohorts (P value > 0.05). CONCLUSION. Percutaneous robot-assisted spine surgery may increase radiation exposure, but can achieve a shorter operative time and lower risk for intraoperative blood loss for short-lumbar fusion. Percutaneous approaches do not appear to have an advantage for other short-term postoperative outcomes. Future multicenter studies on longer fusion surgeries and the inclusion of patient-reported outcomes are needed. Level of Evidence: 3