Cargando…
Predicting Hospital Readmission in Heart Failure Patients in Iran: A Comparison of Various Machine Learning Methods
OBJECTIVES: Heart failure (HF) is a common disease with a high hospital readmission rate. This study considered class imbalance and missing data, which are two common issues in medical data. The current study’s main goal was to compare the performance of six machine learning (ML) methods for predict...
Autores principales: | Najafi-Vosough, Roya, Faradmal, Javad, Hosseini, Seyed Kianoosh, Moghimbeigi, Abbas, Mahjub, Hossein |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society of Medical Informatics
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8654329/ https://www.ncbi.nlm.nih.gov/pubmed/34788911 http://dx.doi.org/10.4258/hir.2021.27.4.307 |
Ejemplares similares
-
Longitudinal machine learning model for predicting systolic blood pressure in patients with heart failure
por: NAJAFI-VOSOUGH, ROYA, et al.
Publicado: (2023) -
Recurrence in Patients with Bipolar Disorder and Its Risk Factors
por: Najafi-Vosough, Roya, et al.
Publicado: (2016) -
Diabetic peripheral neuropathy class prediction by multicategory support vector machine model: a cross-sectional study
por: Kazemi, Maryam, et al.
Publicado: (2016) -
Gastric and Esophageal Cancers Incidence Mapping in Golestan Province, Iran: Using Bayesian–Gibbs Sampling
por: Hosseintabar Marzoni, Atefeh-Sadat, et al.
Publicado: (2015) -
Joint Disease Mapping of Two Digestive Cancers in Golestan Province, Iran Using a Shared Component Model
por: Chamanpara, Parisa, et al.
Publicado: (2015)