Cargando…

Computational Modeling of Electroencephalography and Functional Magnetic Resonance Imaging Paradigms Indicates a Consistent Loss of Pyramidal Cell Synaptic Gain in Schizophrenia

BACKGROUND: Diminished synaptic gain—the sensitivity of postsynaptic responses to neural inputs—may be a fundamental synaptic pathology in schizophrenia. Evidence for this is indirect, however. Furthermore, it is unclear whether pyramidal cells or interneurons (or both) are affected, or how these de...

Descripción completa

Detalles Bibliográficos
Autores principales: Adams, Rick A., Pinotsis, Dimitris, Tsirlis, Konstantinos, Unruh, Leonhardt, Mahajan, Aashna, Horas, Ana Montero, Convertino, Laura, Summerfelt, Ann, Sampath, Hemalatha, Du, Xiaoming Michael, Kochunov, Peter, Ji, Jie Lisa, Repovs, Grega, Murray, John D., Friston, Karl J., Hong, L. Elliot, Anticevic, Alan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8654393/
https://www.ncbi.nlm.nih.gov/pubmed/34598786
http://dx.doi.org/10.1016/j.biopsych.2021.07.024
_version_ 1784611851313610752
author Adams, Rick A.
Pinotsis, Dimitris
Tsirlis, Konstantinos
Unruh, Leonhardt
Mahajan, Aashna
Horas, Ana Montero
Convertino, Laura
Summerfelt, Ann
Sampath, Hemalatha
Du, Xiaoming Michael
Kochunov, Peter
Ji, Jie Lisa
Repovs, Grega
Murray, John D.
Friston, Karl J.
Hong, L. Elliot
Anticevic, Alan
author_facet Adams, Rick A.
Pinotsis, Dimitris
Tsirlis, Konstantinos
Unruh, Leonhardt
Mahajan, Aashna
Horas, Ana Montero
Convertino, Laura
Summerfelt, Ann
Sampath, Hemalatha
Du, Xiaoming Michael
Kochunov, Peter
Ji, Jie Lisa
Repovs, Grega
Murray, John D.
Friston, Karl J.
Hong, L. Elliot
Anticevic, Alan
author_sort Adams, Rick A.
collection PubMed
description BACKGROUND: Diminished synaptic gain—the sensitivity of postsynaptic responses to neural inputs—may be a fundamental synaptic pathology in schizophrenia. Evidence for this is indirect, however. Furthermore, it is unclear whether pyramidal cells or interneurons (or both) are affected, or how these deficits relate to symptoms. METHODS: People with schizophrenia diagnoses (PScz) (n = 108), their relatives (n = 57), and control subjects (n = 107) underwent 3 electroencephalography (EEG) paradigms—resting, mismatch negativity, and 40-Hz auditory steady-state response—and resting functional magnetic resonance imaging. Dynamic causal modeling was used to quantify synaptic connectivity in cortical microcircuits. RESULTS: Classic group differences in EEG features between PScz and control subjects were replicated, including increased theta and other spectral changes (resting EEG), reduced mismatch negativity, and reduced 40-Hz power. Across all 4 paradigms, characteristic PScz data features were all best explained by models with greater self-inhibition (decreased synaptic gain) in pyramidal cells. Furthermore, disinhibition in auditory areas predicted abnormal auditory perception (and positive symptoms) in PScz in 3 paradigms. CONCLUSIONS: First, characteristic EEG changes in PScz in 3 classic paradigms are all attributable to the same underlying parameter change: greater self-inhibition in pyramidal cells. Second, psychotic symptoms in PScz relate to disinhibition in neural circuits. These findings are more commensurate with the hypothesis that in PScz, a primary loss of synaptic gain on pyramidal cells is then compensated by interneuron downregulation (rather than the converse). They further suggest that psychotic symptoms relate to this secondary downregulation.
format Online
Article
Text
id pubmed-8654393
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-86543932022-01-15 Computational Modeling of Electroencephalography and Functional Magnetic Resonance Imaging Paradigms Indicates a Consistent Loss of Pyramidal Cell Synaptic Gain in Schizophrenia Adams, Rick A. Pinotsis, Dimitris Tsirlis, Konstantinos Unruh, Leonhardt Mahajan, Aashna Horas, Ana Montero Convertino, Laura Summerfelt, Ann Sampath, Hemalatha Du, Xiaoming Michael Kochunov, Peter Ji, Jie Lisa Repovs, Grega Murray, John D. Friston, Karl J. Hong, L. Elliot Anticevic, Alan Biol Psychiatry Archival Report BACKGROUND: Diminished synaptic gain—the sensitivity of postsynaptic responses to neural inputs—may be a fundamental synaptic pathology in schizophrenia. Evidence for this is indirect, however. Furthermore, it is unclear whether pyramidal cells or interneurons (or both) are affected, or how these deficits relate to symptoms. METHODS: People with schizophrenia diagnoses (PScz) (n = 108), their relatives (n = 57), and control subjects (n = 107) underwent 3 electroencephalography (EEG) paradigms—resting, mismatch negativity, and 40-Hz auditory steady-state response—and resting functional magnetic resonance imaging. Dynamic causal modeling was used to quantify synaptic connectivity in cortical microcircuits. RESULTS: Classic group differences in EEG features between PScz and control subjects were replicated, including increased theta and other spectral changes (resting EEG), reduced mismatch negativity, and reduced 40-Hz power. Across all 4 paradigms, characteristic PScz data features were all best explained by models with greater self-inhibition (decreased synaptic gain) in pyramidal cells. Furthermore, disinhibition in auditory areas predicted abnormal auditory perception (and positive symptoms) in PScz in 3 paradigms. CONCLUSIONS: First, characteristic EEG changes in PScz in 3 classic paradigms are all attributable to the same underlying parameter change: greater self-inhibition in pyramidal cells. Second, psychotic symptoms in PScz relate to disinhibition in neural circuits. These findings are more commensurate with the hypothesis that in PScz, a primary loss of synaptic gain on pyramidal cells is then compensated by interneuron downregulation (rather than the converse). They further suggest that psychotic symptoms relate to this secondary downregulation. Elsevier 2022-01-15 /pmc/articles/PMC8654393/ /pubmed/34598786 http://dx.doi.org/10.1016/j.biopsych.2021.07.024 Text en © 2021 Society of Biological Psychiatry. https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Archival Report
Adams, Rick A.
Pinotsis, Dimitris
Tsirlis, Konstantinos
Unruh, Leonhardt
Mahajan, Aashna
Horas, Ana Montero
Convertino, Laura
Summerfelt, Ann
Sampath, Hemalatha
Du, Xiaoming Michael
Kochunov, Peter
Ji, Jie Lisa
Repovs, Grega
Murray, John D.
Friston, Karl J.
Hong, L. Elliot
Anticevic, Alan
Computational Modeling of Electroencephalography and Functional Magnetic Resonance Imaging Paradigms Indicates a Consistent Loss of Pyramidal Cell Synaptic Gain in Schizophrenia
title Computational Modeling of Electroencephalography and Functional Magnetic Resonance Imaging Paradigms Indicates a Consistent Loss of Pyramidal Cell Synaptic Gain in Schizophrenia
title_full Computational Modeling of Electroencephalography and Functional Magnetic Resonance Imaging Paradigms Indicates a Consistent Loss of Pyramidal Cell Synaptic Gain in Schizophrenia
title_fullStr Computational Modeling of Electroencephalography and Functional Magnetic Resonance Imaging Paradigms Indicates a Consistent Loss of Pyramidal Cell Synaptic Gain in Schizophrenia
title_full_unstemmed Computational Modeling of Electroencephalography and Functional Magnetic Resonance Imaging Paradigms Indicates a Consistent Loss of Pyramidal Cell Synaptic Gain in Schizophrenia
title_short Computational Modeling of Electroencephalography and Functional Magnetic Resonance Imaging Paradigms Indicates a Consistent Loss of Pyramidal Cell Synaptic Gain in Schizophrenia
title_sort computational modeling of electroencephalography and functional magnetic resonance imaging paradigms indicates a consistent loss of pyramidal cell synaptic gain in schizophrenia
topic Archival Report
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8654393/
https://www.ncbi.nlm.nih.gov/pubmed/34598786
http://dx.doi.org/10.1016/j.biopsych.2021.07.024
work_keys_str_mv AT adamsricka computationalmodelingofelectroencephalographyandfunctionalmagneticresonanceimagingparadigmsindicatesaconsistentlossofpyramidalcellsynapticgaininschizophrenia
AT pinotsisdimitris computationalmodelingofelectroencephalographyandfunctionalmagneticresonanceimagingparadigmsindicatesaconsistentlossofpyramidalcellsynapticgaininschizophrenia
AT tsirliskonstantinos computationalmodelingofelectroencephalographyandfunctionalmagneticresonanceimagingparadigmsindicatesaconsistentlossofpyramidalcellsynapticgaininschizophrenia
AT unruhleonhardt computationalmodelingofelectroencephalographyandfunctionalmagneticresonanceimagingparadigmsindicatesaconsistentlossofpyramidalcellsynapticgaininschizophrenia
AT mahajanaashna computationalmodelingofelectroencephalographyandfunctionalmagneticresonanceimagingparadigmsindicatesaconsistentlossofpyramidalcellsynapticgaininschizophrenia
AT horasanamontero computationalmodelingofelectroencephalographyandfunctionalmagneticresonanceimagingparadigmsindicatesaconsistentlossofpyramidalcellsynapticgaininschizophrenia
AT convertinolaura computationalmodelingofelectroencephalographyandfunctionalmagneticresonanceimagingparadigmsindicatesaconsistentlossofpyramidalcellsynapticgaininschizophrenia
AT summerfeltann computationalmodelingofelectroencephalographyandfunctionalmagneticresonanceimagingparadigmsindicatesaconsistentlossofpyramidalcellsynapticgaininschizophrenia
AT sampathhemalatha computationalmodelingofelectroencephalographyandfunctionalmagneticresonanceimagingparadigmsindicatesaconsistentlossofpyramidalcellsynapticgaininschizophrenia
AT duxiaomingmichael computationalmodelingofelectroencephalographyandfunctionalmagneticresonanceimagingparadigmsindicatesaconsistentlossofpyramidalcellsynapticgaininschizophrenia
AT kochunovpeter computationalmodelingofelectroencephalographyandfunctionalmagneticresonanceimagingparadigmsindicatesaconsistentlossofpyramidalcellsynapticgaininschizophrenia
AT jijielisa computationalmodelingofelectroencephalographyandfunctionalmagneticresonanceimagingparadigmsindicatesaconsistentlossofpyramidalcellsynapticgaininschizophrenia
AT repovsgrega computationalmodelingofelectroencephalographyandfunctionalmagneticresonanceimagingparadigmsindicatesaconsistentlossofpyramidalcellsynapticgaininschizophrenia
AT murrayjohnd computationalmodelingofelectroencephalographyandfunctionalmagneticresonanceimagingparadigmsindicatesaconsistentlossofpyramidalcellsynapticgaininschizophrenia
AT fristonkarlj computationalmodelingofelectroencephalographyandfunctionalmagneticresonanceimagingparadigmsindicatesaconsistentlossofpyramidalcellsynapticgaininschizophrenia
AT honglelliot computationalmodelingofelectroencephalographyandfunctionalmagneticresonanceimagingparadigmsindicatesaconsistentlossofpyramidalcellsynapticgaininschizophrenia
AT anticevicalan computationalmodelingofelectroencephalographyandfunctionalmagneticresonanceimagingparadigmsindicatesaconsistentlossofpyramidalcellsynapticgaininschizophrenia