Cargando…

Automated COVID-19 detection from X-ray and CT images with stacked ensemble convolutional neural network

Automatic and rapid screening of COVID-19 from the radiological (X-ray or CT scan) images has become an urgent need in the current pandemic situation of SARS-CoV-2 worldwide. However, accurate and reliable screening of patients is challenging due to the discrepancy between the radiological images of...

Descripción completa

Detalles Bibliográficos
Autores principales: Gour, Mahesh, Jain, Sweta
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences. Published by Elsevier B.V. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8654581/
https://www.ncbi.nlm.nih.gov/pubmed/34908638
http://dx.doi.org/10.1016/j.bbe.2021.12.001
Descripción
Sumario:Automatic and rapid screening of COVID-19 from the radiological (X-ray or CT scan) images has become an urgent need in the current pandemic situation of SARS-CoV-2 worldwide. However, accurate and reliable screening of patients is challenging due to the discrepancy between the radiological images of COVID-19 and other viral pneumonia. So, in this paper, we design a new stacked convolutional neural network model for the automatic diagnosis of COVID-19 disease from the chest X-ray and CT images. In the proposed approach, different sub-models have been obtained from the VGG19 and the Xception models during the training. Thereafter, obtained sub-models are stacked together using softmax classifier. The proposed stacked CNN model combines the discriminating power of the different CNN’s sub-models and detects COVID-19 from the radiological images. In addition, we collect CT images to build a CT image dataset and also generate an X-ray images dataset by combining X-ray images from the three publicly available data repositories. The proposed stacked CNN model achieves a sensitivity of 97.62% for the multi-class classification of X-ray images into COVID-19, Normal and Pneumonia Classes and 98.31% sensitivity for binary classification of CT images into COVID-19 and no-Finding classes. Our proposed approach shows superiority over the existing methods for the detection of the COVID-19 cases from the X-ray radiological images.