Cargando…
A class-contrastive human-interpretable machine learning approach to predict mortality in severe mental illness
Machine learning (ML), one aspect of artificial intelligence (AI), involves computer algorithms that train themselves. They have been widely applied in the healthcare domain. However, many trained ML algorithms operate as ‘black boxes’, producing a prediction from input data without a clear explanat...
Autores principales: | Banerjee, Soumya, Lio, Pietro, Jones, Peter B., Cardinal, Rudolf N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8654849/ https://www.ncbi.nlm.nih.gov/pubmed/34880262 http://dx.doi.org/10.1038/s41537-021-00191-y |
Ejemplares similares
-
Longer-term mortality following SARS-CoV-2 infection in people with severe mental illness: retrospective case-matched study
por: Chen, Shanquan, et al.
Publicado: (2021) -
A novel interpretable machine learning algorithm to identify optimal parameter space for cancer growth
por: Coggan, Helena, et al.
Publicado: (2022) -
Interpretable machine learning prediction of all-cause mortality
por: Qiu, Wei, et al.
Publicado: (2022) -
Interpretable Machine Learning for Characterization of Focal Liver Lesions by Contrast-Enhanced Ultrasound
por: Turco, Simona, et al.
Publicado: (2022) -
Patient and public involvement to build trust in artificial intelligence: A framework, tools, and case studies
por: Banerjee, Soumya, et al.
Publicado: (2022)