Cargando…
Improved analyses of GWAS summary statistics by reducing data heterogeneity and errors
Summary statistics from genome-wide association studies (GWAS) have facilitated the development of various summary data-based methods, which typically require a reference sample for linkage disequilibrium (LD) estimation. Analyses using these methods may be biased by errors in GWAS summary data or L...
Autores principales: | Chen, Wenhan, Wu, Yang, Zheng, Zhili, Qi, Ting, Visscher, Peter M., Zhu, Zhihong, Yang, Jian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8654883/ https://www.ncbi.nlm.nih.gov/pubmed/34880243 http://dx.doi.org/10.1038/s41467-021-27438-7 |
Ejemplares similares
-
Joint analysis of GWAS and multi-omics QTL summary statistics reveals a large fraction of GWAS signals shared with molecular phenotypes
por: Wu, Yang, et al.
Publicado: (2023) -
Causal associations between risk factors and common diseases inferred from GWAS summary data
por: Zhu, Zhihong, et al.
Publicado: (2018) -
Across-cohort QC analyses of GWAS summary statistics from complex traits
por: Chen, Guo-Bo, et al.
Publicado: (2017) -
Predicting gene targets from integrative analyses of summary data from GWAS and eQTL studies for 28 human complex traits
por: Pavlides, Jennifer M. Whitehead, et al.
Publicado: (2016) -
Workshop proceedings: GWAS summary statistics standards and sharing
por: MacArthur, Jacqueline A.L., et al.
Publicado: (2021)