Cargando…
Forecasting adverse surgical events using self-supervised transfer learning for physiological signals
Hundreds of millions of surgical procedures take place annually across the world, which generate a prevalent type of electronic health record (EHR) data comprising time series physiological signals. Here, we present a transferable embedding method (i.e., a method to transform time series signals int...
Autores principales: | Chen, Hugh, Lundberg, Scott M., Erion, Gabriel, Kim, Jerry H., Lee, Su-In |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8654960/ https://www.ncbi.nlm.nih.gov/pubmed/34880410 http://dx.doi.org/10.1038/s41746-021-00536-y |
Ejemplares similares
-
Supervised machine learning in wind forecasting and ramp event prediction
por: Dhiman, Harsh S, et al.
Publicado: (2020) -
Weak self-supervised learning for seizure forecasting: a feasibility study
por: Yang, Yikai, et al.
Publicado: (2022) -
Self-supervised learning for modal transfer of brain imaging
por: Cheng, Dapeng, et al.
Publicado: (2022) -
Autoregressive Affective Language Forecasting: A Self-Supervised Task
por: Matero, Matthew, et al.
Publicado: (2020) -
Self-supervised representation learning for surgical activity recognition
por: Paysan, Daniel, et al.
Publicado: (2021)