Cargando…
Decoding accelerometry for classification and prediction of critically ill patients with severe brain injury
Our goal is to explore quantitative motor features in critically ill patients with severe brain injury (SBI). We hypothesized that computational decoding of these features would yield information on underlying neurological states and outcomes. Using wearable microsensors placed on all extremities, w...
Autores principales: | Bhattacharyay, Shubhayu, Rattray, John, Wang, Matthew, Dziedzic, Peter H., Calvillo, Eusebia, Kim, Han B., Joshi, Eshan, Kudela, Pawel, Etienne-Cummings, Ralph, Stevens, Robert D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8654973/ https://www.ncbi.nlm.nih.gov/pubmed/34880296 http://dx.doi.org/10.1038/s41598-021-02974-w |
Ejemplares similares
-
Author Correction: Decoding accelerometry for classification and prediction of critically ill patients with severe brain injury
por: Bhattacharyay, Shubhayu, et al.
Publicado: (2022) -
Quantitative classification of pediatric swallowing through accelerometry
por: Celeste, Merey, et al.
Publicado: (2012) -
Supervised versus unsupervised approaches to classification of accelerometry data
por: Sur, Maitreyi, et al.
Publicado: (2023) -
The leap to ordinal: Detailed functional prognosis after traumatic brain injury with a flexible modelling approach
por: Bhattacharyay, Shubhayu, et al.
Publicado: (2022) -
Accelerometry-Based Classification of Human Activities Using Markov Modeling
por: Mannini, Andrea, et al.
Publicado: (2011)