Cargando…

Preclinical evaluation of noncontact vital signs monitoring using real-time IR-UWB radar and factors affecting its accuracy

Recently, noncontact vital sign monitors have attracted attention because of issues related to the transmission of contagious diseases. We developed a real-time vital sign monitor using impulse-radio ultrawideband (IR-UWB) radar with embedded processors and software; we then evaluated its accuracy i...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Jun-Young, Lee, Yonggu, Heo, Ran, Park, Hyun-Kyung, Cho, Seok-Hyun, Cho, Sung Ho, Lim, Young-Hyo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8655004/
https://www.ncbi.nlm.nih.gov/pubmed/34880335
http://dx.doi.org/10.1038/s41598-021-03069-2
Descripción
Sumario:Recently, noncontact vital sign monitors have attracted attention because of issues related to the transmission of contagious diseases. We developed a real-time vital sign monitor using impulse-radio ultrawideband (IR-UWB) radar with embedded processors and software; we then evaluated its accuracy in measuring heart rate (HR) and respiratory rate (RR) and investigated the factors affecting the accuracy of the radar-based measurements. In 50 patients visiting a cardiology clinic, HR and RR were measured using IR-UWB radar simultaneously with electrocardiography and capnometry. All patients underwent HR and RR measurements in 2 postures—supine and sitting—for 2 min each. There was a high agreement between the RR measured using radar and capnometry (concordance correlation coefficient [CCC] 0.925 [0.919–0.926]; upper and lower limits of agreement [LOA], − 2.21 and 3.90 breaths/min). The HR measured using radar was also in close agreement with the value measured using electrocardiography (CCC 0.749 [0.738–0.760]; upper and lower LOA, − 12.78 and 15.04 beats/min). Linear mixed effect models showed that the sitting position and an HR < 70 bpm were associated with an increase in the absolute biases of the HR, whereas the sitting position and an RR < 18 breaths/min were associated with an increase in the absolute biases of the RR. The IR-UWB radar sensor with embedded processors and software can measure the RR and HR in real time with high precision. The sitting position and a low RR or HR were associated with the accuracy of RR and HR measurement, respectively, using IR-UWB radar.