Cargando…
Passive detection of COVID-19 with wearable sensors and explainable machine learning algorithms
Individual smartwatch or fitness band sensor data in the setting of COVID-19 has shown promise to identify symptomatic and pre-symptomatic infection or the need for hospitalization, correlations between peripheral temperature and self-reported fever, and an association between changes in heart-rate-...
Autores principales: | Gadaleta, Matteo, Radin, Jennifer M., Baca-Motes, Katie, Ramos, Edward, Kheterpal, Vik, Topol, Eric J., Steinhubl, Steven R., Quer, Giorgio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8655005/ https://www.ncbi.nlm.nih.gov/pubmed/34880366 http://dx.doi.org/10.1038/s41746-021-00533-1 |
Ejemplares similares
-
Sensor-based surveillance for digitising real-time COVID-19 tracking in the USA (DETECT): a multivariable, population-based, modelling study
por: Radin, Jennifer M, et al.
Publicado: (2022) -
Assessment of Prolonged Physiological and Behavioral Changes Associated With COVID-19 Infection
por: Radin, Jennifer M., et al.
Publicado: (2021) -
Inter-individual variation in objective measure of reactogenicity following COVID-19 vaccination via smartwatches and fitness bands
por: Quer, Giorgio, et al.
Publicado: (2022) -
Characteristics of the modern-day physician house call
por: Fortin Ensign, Shannon, et al.
Publicado: (2019) -
The digital phenotype of vaccination
por: Quer, Giorgio, et al.
Publicado: (2022)