Cargando…

A plant-biotechnology approach for producing highly potent anti-HIV antibodies for antiretroviral therapy consideration

Despite a reduction in global HIV prevalence the development of a pipeline of new therapeutics or pre-exposure prophylaxis to control the HIV/AIDS epidemic are of high priority. Antibody-based therapies offer several advantages and have been shown to prevent HIV-infection. Plant-based production is...

Descripción completa

Detalles Bibliográficos
Autores principales: Singh, Advaita Acarya, Pillay, Priyen, Kwezi, Lusisizwe, Tsekoa, Tsepo Lebiletsa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8655037/
https://www.ncbi.nlm.nih.gov/pubmed/34878628
http://dx.doi.org/10.1186/s43141-021-00279-z
Descripción
Sumario:Despite a reduction in global HIV prevalence the development of a pipeline of new therapeutics or pre-exposure prophylaxis to control the HIV/AIDS epidemic are of high priority. Antibody-based therapies offer several advantages and have been shown to prevent HIV-infection. Plant-based production is efficient for several biologics, including antibodies. We provide a short review on the work by Singh et al., 2020 who demonstrated the transient production of potent CAP256-VRC26 broadly neutralizing antibodies. These antibodies have engineered posttranslational modifications, namely N-glycosylation in the fragment crystallizable region and O-sulfation of tyrosine residues in the complementary-determining region H3 loop. The glycoengineered Nicotiana benthamiana mutant (ΔXTFT) was used, with glycosylating structures lacking β1,2-xylose and/or α1,3-fucose residues, which is critical for enhanced effector activity. The CAP256-VRC26 antibody lineage targets the first and second variable region of the HIV-1 gp120 envelope glycoprotein. The high potency of this lineage is mediated by a protruding O-sulfated tyrosine in the CDR H3 loop. Nicotiana benthamiana lacks human tyrosyl protein sulfotransferase 1, the enzyme responsible for tyrosine O-sulfation. The transient coexpression of the CAP256-VRC26 antibodies with tyrosyl protein sulfotransferase 1 in planta had restored the efficacy of these antibodies through the incorporation of the O-sulfation modification. This approach demonstrates the strategic incorporation of posttranslational modifications in production systems, which may have not been previously considered. These plant-produced CAP256-VRC26 antibodies have therapeutic as well as topical and systemic pre-exposure prophylaxis potential in enabling the empowerment of young girls and women given that gender inequalities remain a major driver of the epidemic.