Cargando…
All-fiber ultrafast amplifier at 1.9 μm based on thulium-doped normal dispersion fiber and LMA fiber compressor
The duration reduction and the peak power increase of ultrashort pulses generated by all-fiber sources at a wavelength of [Formula: see text] are urgent tasks. Finding an effective and easy way to improve these characteristics of ultrafast lasers can allow a broad implementation of wideband coherent...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8655054/ https://www.ncbi.nlm.nih.gov/pubmed/34880282 http://dx.doi.org/10.1038/s41598-021-02934-4 |
Sumario: | The duration reduction and the peak power increase of ultrashort pulses generated by all-fiber sources at a wavelength of [Formula: see text] are urgent tasks. Finding an effective and easy way to improve these characteristics of ultrafast lasers can allow a broad implementation of wideband coherent supercontinuum sources in the mid-IR range required for various applications. As an alternative approach to sub-100 fs pulse generation, we present an ultrafast all-fiber amplifier based on a normal-dispersion germanosilicate thulium-doped active fiber and a large-mode-area silica-fiber compressor. The output pulses have the following characteristics: the central wavelength of [Formula: see text] , the repetition rate of 23.8 MHz, the energy per pulse period of 25 nJ, the average power of 600 mW, and a random output polarization. The pulse intensity and phase profiles were measured via the second-harmonic-generation frequency-resolved optical gating technique for a linearly polarized pulse. The linearly polarized pulse has a duration of 71 fs and a peak power of 128.7 kW. The maximum estimated peak power for all polarizations is 220 kW. The dynamics of ultrashort-pulse propagation in the amplifier were analyzed using numerical simulations. |
---|