Cargando…
New explainability method for BERT-based model in fake news detection
The ubiquity of social media and their deep integration in the contemporary society has granted new ways to interact, exchange information, form groups, or earn money—all on a scale never seen before. Those possibilities paired with the widespread popularity contribute to the level of impact that so...
Autores principales: | Szczepański, Mateusz, Pawlicki, Marek, Kozik, Rafał, Choraś, Michał |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8655070/ https://www.ncbi.nlm.nih.gov/pubmed/34880354 http://dx.doi.org/10.1038/s41598-021-03100-6 |
Ejemplares similares
-
Sentiment Analysis for Fake News Detection by Means of Neural Networks
por: Kula, Sebastian, et al.
Publicado: (2020) -
Machine Learning – The Results Are Not the only Thing that Matters! What About Security, Explainability and Fairness?
por: Choraś, Michał, et al.
Publicado: (2020) -
FakeBERT: Fake news detection in social media with a BERT-based deep learning approach
por: Kaliyar, Rohit Kumar, et al.
Publicado: (2021) -
Implementation of the BERT-derived architectures to tackle disinformation challenges
por: Kula, Sebastian, et al.
Publicado: (2021) -
Sensors and Pattern Recognition Methods for Security and Industrial Applications
por: Choraś, Michał, et al.
Publicado: (2022)