Cargando…
Boosting-GNN: Boosting Algorithm for Graph Networks on Imbalanced Node Classification
The graph neural network (GNN) has been widely used for graph data representation. However, the existing researches only consider the ideal balanced dataset, and the imbalanced dataset is rarely considered. Traditional methods such as resampling, reweighting, and synthetic samples that deal with imb...
Autores principales: | Shi, Shuhao, Qiao, Kai, Yang, Shuai, Wang, Linyuan, Chen, Jian, Yan, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8655128/ https://www.ncbi.nlm.nih.gov/pubmed/34899230 http://dx.doi.org/10.3389/fnbot.2021.775688 |
Ejemplares similares
-
Improved PSO_AdaBoost Ensemble Algorithm for Imbalanced Data
por: Li, Kewen, et al.
Publicado: (2019) -
Graph Neural Network(GNN) Inference of FPGA
por: Fuad, Kazi Ahmed Asif
Publicado: (2019) -
Ensemble-GNN: federated ensemble learning with graph neural networks for disease module discovery and classification
por: Pfeifer, Bastian, et al.
Publicado: (2023) -
SkipGNN: predicting molecular interactions with skip-graph networks
por: Huang, Kexin, et al.
Publicado: (2020) -
Auto-GNN: Neural architecture search of graph neural networks
por: Zhou, Kaixiong, et al.
Publicado: (2022)