Cargando…
Machine‐Learning Microstructure for Inverse Material Design
Metallurgy and material design have thousands of years’ history and have played a critical role in the civilization process of humankind. The traditional trial‐and‐error method has been unprecedentedly challenged in the modern era when the number of components and phases in novel alloys keeps increa...
Autores principales: | Pei, Zongrui, Rozman, Kyle A., Doğan, Ömer N., Wen, Youhai, Gao, Nan, Holm, Elizabeth A., Hawk, Jeffrey A., Alman, David E., Gao, Michael C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8655171/ https://www.ncbi.nlm.nih.gov/pubmed/34716677 http://dx.doi.org/10.1002/advs.202101207 |
Ejemplares similares
-
Dataset for machine learning of microstructures for 9% Cr steels
por: Rozman, Kyle A., et al.
Publicado: (2022) -
Theory-guided design of high-entropy alloys with enhanced strength-ductility synergy
por: Pei, Zongrui, et al.
Publicado: (2023) -
Inverse Design of Materials by Machine Learning
por: Wang, Jia, et al.
Publicado: (2022) -
Microstructured Materials Inverse Problems
por: Janno, Jaan, et al.
Publicado: (2011) -
Generative Adversarial Networks and Mixture Density Networks-Based Inverse Modeling for Microstructural Materials Design
por: Mao, Yuwei, et al.
Publicado: (2022)