Cargando…
Data-Driven Discovery of Mathematical and Physical Relations in Oncology Data Using Human-Understandable Machine Learning
For decades, researchers have used the concepts of rate of change and differential equations to model and forecast neoplastic processes. This expressive mathematical apparatus brought significant insights in oncology by describing the unregulated proliferation and host interactions of cancer cells,...
Autores principales: | Kurz, Daria, Sánchez, Carlos Salort, Axenie, Cristian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8655230/ https://www.ncbi.nlm.nih.gov/pubmed/34901835 http://dx.doi.org/10.3389/frai.2021.713690 |
Ejemplares similares
-
Understanding the need for digital twins’ data in patient advocacy and forecasting oncology
por: Chang, Hung-Ching, et al.
Publicado: (2023) -
Ensuring the Robustness and Reliability of Data-Driven Knowledge Discovery Models in Production and Manufacturing
por: Tripathi, Shailesh, et al.
Publicado: (2021) -
Discovery of Physics From Data: Universal Laws and Discrepancies
por: de Silva, Brian M., et al.
Publicado: (2020) -
Applications of Topological Data Analysis in Oncology
por: Bukkuri, Anuraag, et al.
Publicado: (2021) -
AI Data-Driven Personalisation and Disability Inclusion
por: Wald, Mike
Publicado: (2021)