Cargando…
Do comprehensive deep learning algorithms suffer from hidden stratification? A retrospective study on pneumothorax detection in chest radiography
OBJECTIVES: To evaluate the ability of a commercially available comprehensive chest radiography deep convolutional neural network (DCNN) to detect simple and tension pneumothorax, as stratified by the following subgroups: the presence of an intercostal drain; rib, clavicular, scapular or humeral fra...
Autores principales: | Seah, Jarrel, Tang, Cyril, Buchlak, Quinlan D, Milne, Michael Robert, Holt, Xavier, Ahmad, Hassan, Lambert, John, Esmaili, Nazanin, Oakden-Rayner, Luke, Brotchie, Peter, Jones, Catherine M |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8655590/ https://www.ncbi.nlm.nih.gov/pubmed/34876430 http://dx.doi.org/10.1136/bmjopen-2021-053024 |
Ejemplares similares
-
Chest radiographs and machine learning – Past, present and future
por: Jones, Catherine M, et al.
Publicado: (2021) -
Assessment of the effect of a comprehensive chest radiograph deep learning model on radiologist reports and patient outcomes: a real-world observational study
por: Jones, Catherine M, et al.
Publicado: (2021) -
Analysis of Line and Tube Detection Performance of a Chest X-ray Deep Learning Model to Evaluate Hidden Stratification
por: Tang, Cyril H. M., et al.
Publicado: (2023) -
Machine Learning Augmented Interpretation of Chest X-rays: A Systematic Review
por: Ahmad, Hassan K., et al.
Publicado: (2023) -
Predictors of improvement in quality of life at 12-month follow-up in patients undergoing anterior endoscopic skull base surgery
por: Buchlak, Quinlan D., et al.
Publicado: (2022)