Cargando…
Uncertainty Prediction for Machine Learning Models of Material Properties
[Image: see text] Uncertainty quantification in artificial intelligence (AI)-based predictions of material properties is of immense importance for the success and reliability of AI applications in materials science. While confidence intervals are commonly reported for machine learning (ML) models, p...
Autores principales: | Tavazza, Francesca, DeCost, Brian, Choudhary, Kamal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8655759/ https://www.ncbi.nlm.nih.gov/pubmed/34901594 http://dx.doi.org/10.1021/acsomega.1c03752 |
Ejemplares similares
-
Exploiting redundancy in large materials datasets for efficient machine learning with less data
por: Li, Kangming, et al.
Publicado: (2023) -
Cross-property deep transfer learning framework for enhanced predictive analytics on small materials data
por: Gupta, Vishu, et al.
Publicado: (2021) -
Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning
por: Jha, Dipendra, et al.
Publicado: (2019) -
Author Correction: Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning
por: Jha, Dipendra, et al.
Publicado: (2020) -
A large dataset of synthetic SEM images of powder materials and their ground truth 3D structures
por: DeCost, Brian L., et al.
Publicado: (2016)