Cargando…

Hydration of LiOH and LiCl—Near-Infrared Spectroscopic Analysis

[Image: see text] The hydration behavior of LiOH, LiOH·H(2)O, and LiCl was observed by near-infrared (NIR) spectroscopy. Anhydrous LiOH showed two absorption bands at 7340 and 7171 cm(–1). These NIR bands were assigned to the first overtone of surface hydroxyls and interlayer hydroxyls of LiOH, resp...

Descripción completa

Detalles Bibliográficos
Autores principales: Takeuchi, Masato, Kurosawa, Ryo, Ryu, Junichi, Matsuoka, Masaya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8655917/
https://www.ncbi.nlm.nih.gov/pubmed/34901659
http://dx.doi.org/10.1021/acsomega.1c05379
Descripción
Sumario:[Image: see text] The hydration behavior of LiOH, LiOH·H(2)O, and LiCl was observed by near-infrared (NIR) spectroscopy. Anhydrous LiOH showed two absorption bands at 7340 and 7171 cm(–1). These NIR bands were assigned to the first overtone of surface hydroxyls and interlayer hydroxyls of LiOH, respectively. LiOH·H(2)O showed two absorption bands at 7137 and 6970 cm(–1). These NIR bands were assigned to the first overtone of interlayer hydroxyls and H(2)O molecules coordinated with Li(+), respectively. The interlayer OH(–) and the coordinated H(2)O of LiOH·H(2)O were not modified even when the LiOH·H(2)O was exposed to air. In contrast, anhydrous LiOH was slowly hydrated for several hours, to form LiOH·H(2)O under ambient conditions (RH 60%). Kinetic analysis showed that the hydration of the interlayer OH(–) of LiOH proceeded as a second-order reaction, indicating the formation of intermediate species—[Li(H(2)O)(x)(OH)(4)](3–) (x = 1 or 2). However, the hydration of the LiOH surface did not follow a second-order reaction because the chemisorption of H(2)O molecules onto the defect sites of the LiOH surface does not need to crossover the energy barrier. Furthermore, we succeeded in observing the hydration of deliquescent LiCl, including the formation of LiCl solution for several minutes by NIR spectroscopy.