Cargando…
Prediction of Binding Free Energy of Protein–Ligand Complexes with a Hybrid Molecular Mechanics/Generalized Born Surface Area and Machine Learning Method
[Image: see text] Accurate prediction of protein–ligand binding free energies is important in enzyme engineering and drug discovery. The molecular mechanics/generalized Born surface area (MM/GBSA) approach is widely used to estimate ligand-binding affinities, but its performance heavily relies on th...
Autores principales: | Dong, Lina, Qu, Xiaoyang, Zhao, Yuan, Wang, Binju |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8655939/ https://www.ncbi.nlm.nih.gov/pubmed/34901645 http://dx.doi.org/10.1021/acsomega.1c04996 |
Ejemplares similares
-
XLPFE: A Simple and Effective Machine Learning Scoring
Function for Protein–Ligand Scoring and Ranking
por: Dong, Lina, et al.
Publicado: (2022) -
Enhanced Ligand Sampling for Relative Protein–Ligand
Binding Free Energy Calculations
por: Kaus, Joseph W., et al.
Publicado: (2015) -
Converging ligand‐binding free energies obtained with free‐energy perturbations at the quantum mechanical level
por: Olsson, Martin A., et al.
Publicado: (2016) -
Predictions
of Ligand Selectivity from Absolute Binding
Free Energy Calculations
por: Aldeghi, Matteo, et al.
Publicado: (2016) -
Predicting Binding Affinities for GPCR Ligands Using
Free-Energy Perturbation
por: Lenselink, Eelke B., et al.
Publicado: (2016)