Cargando…
Neurodevelopmental Findings and Epilepsy in Malformations of Cortical Development
AIM: The purpose of this study is to classify the malformations of cortical development in children according to the embryological formation, localization, and neurodevelopmental findings. Seizure/epilepsy and electrophysiological findings have also been compared. MATERIAL AND METHODS: Seventy-five...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Turkish Pediatrics Association
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8655965/ https://www.ncbi.nlm.nih.gov/pubmed/35005731 http://dx.doi.org/10.5152/TurkArchPediatr.2021.20148 |
_version_ | 1784612185344835584 |
---|---|
author | Şah, Olcay Türkdoğan, Dilşad Küçük, Selda Takış, Gülnur Asadov, Ruslan Öztürk, Gülten Ünver, Olcay Ekinci, Gazanfer |
author_facet | Şah, Olcay Türkdoğan, Dilşad Küçük, Selda Takış, Gülnur Asadov, Ruslan Öztürk, Gülten Ünver, Olcay Ekinci, Gazanfer |
author_sort | Şah, Olcay |
collection | PubMed |
description | AIM: The purpose of this study is to classify the malformations of cortical development in children according to the embryological formation, localization, and neurodevelopmental findings. Seizure/epilepsy and electrophysiological findings have also been compared. MATERIAL AND METHODS: Seventy-five children (age: 1 month-16.5 years; 56% male) followed with the diagnosis of malformation of cortical development, in Marmara University Pendik Research and Educational Hospital Department of Pediatric Neurology, were included in the study. Their epilepsy characteristics, electroencephalogram (EEG) findings, and prognosis were reported. Neurodevelopmental characteristics were evaluated by the Bayley Scales of Infant and Toddler Development (Bayley-III) for the ages of 0-42 months (n = 30); the Denver Developmental Screening Test-II (DDST-II) for ages 42 months-6 years (n = 11); and the Wechsler Intelligence Scales for Children (WISC-R), used for children 6 years and older (n = 34). RESULTS: The patients were classified as 44% premigrational (14.6% microcephaly, 24% tuberous sclerosis, 2.7% focal cortical dysplasia, 1.3% hemimegalencephaly, and 1.3% diffuse cortical dysgenesis); 17.3% migrational (14.6% lissencephaly, 2.7% heterotopia); and 38.6% postmigrational (14.6% schizencephaly, 24% polymicrogyria) developmentally. According to involved area, the classification was 34.7% hemispheric/multilobar, 33.3% diffuse, and 32% focal. Seventy-five percent of the patients had a history of epilepsy, and 92% were resistant to treatment. The seizures started before the age of 12 months in diffuse malformations, and epileptic encephalopathy was more common in microcephaly with a rate of 80% and lissencephaly with a rate of 54.5% in the first EEGs. Ninety-five percent of patients had at least one level of neurodevelopmental delay detected by DDST/Bayley-III; this was more common in patients with accompanying epilepsy (P < .05). As seen more commonly in patients with diffuse pathologies and intractable frequent seizures, mental retardation was detected by WISC-R in 64.5% of patients (P < .05). CONCLUSION: In cases with cortical developmental malformation, epilepsy/EEG features and neurodevelopmental prognosis can be predicted depending on the developmental process and type and extent of involvement. Patients should be followed up closely with EEG. |
format | Online Article Text |
id | pubmed-8655965 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Turkish Pediatrics Association |
record_format | MEDLINE/PubMed |
spelling | pubmed-86559652022-01-07 Neurodevelopmental Findings and Epilepsy in Malformations of Cortical Development Şah, Olcay Türkdoğan, Dilşad Küçük, Selda Takış, Gülnur Asadov, Ruslan Öztürk, Gülten Ünver, Olcay Ekinci, Gazanfer Turk Arch Pediatr Original Article AIM: The purpose of this study is to classify the malformations of cortical development in children according to the embryological formation, localization, and neurodevelopmental findings. Seizure/epilepsy and electrophysiological findings have also been compared. MATERIAL AND METHODS: Seventy-five children (age: 1 month-16.5 years; 56% male) followed with the diagnosis of malformation of cortical development, in Marmara University Pendik Research and Educational Hospital Department of Pediatric Neurology, were included in the study. Their epilepsy characteristics, electroencephalogram (EEG) findings, and prognosis were reported. Neurodevelopmental characteristics were evaluated by the Bayley Scales of Infant and Toddler Development (Bayley-III) for the ages of 0-42 months (n = 30); the Denver Developmental Screening Test-II (DDST-II) for ages 42 months-6 years (n = 11); and the Wechsler Intelligence Scales for Children (WISC-R), used for children 6 years and older (n = 34). RESULTS: The patients were classified as 44% premigrational (14.6% microcephaly, 24% tuberous sclerosis, 2.7% focal cortical dysplasia, 1.3% hemimegalencephaly, and 1.3% diffuse cortical dysgenesis); 17.3% migrational (14.6% lissencephaly, 2.7% heterotopia); and 38.6% postmigrational (14.6% schizencephaly, 24% polymicrogyria) developmentally. According to involved area, the classification was 34.7% hemispheric/multilobar, 33.3% diffuse, and 32% focal. Seventy-five percent of the patients had a history of epilepsy, and 92% were resistant to treatment. The seizures started before the age of 12 months in diffuse malformations, and epileptic encephalopathy was more common in microcephaly with a rate of 80% and lissencephaly with a rate of 54.5% in the first EEGs. Ninety-five percent of patients had at least one level of neurodevelopmental delay detected by DDST/Bayley-III; this was more common in patients with accompanying epilepsy (P < .05). As seen more commonly in patients with diffuse pathologies and intractable frequent seizures, mental retardation was detected by WISC-R in 64.5% of patients (P < .05). CONCLUSION: In cases with cortical developmental malformation, epilepsy/EEG features and neurodevelopmental prognosis can be predicted depending on the developmental process and type and extent of involvement. Patients should be followed up closely with EEG. Turkish Pediatrics Association 2021-07-01 /pmc/articles/PMC8655965/ /pubmed/35005731 http://dx.doi.org/10.5152/TurkArchPediatr.2021.20148 Text en © Copyright 2021 by The Turkish Archives of Pediatrics https://creativecommons.org/licenses/by-nc/4.0/Content of this journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. (https://creativecommons.org/licenses/by-nc/4.0/) |
spellingShingle | Original Article Şah, Olcay Türkdoğan, Dilşad Küçük, Selda Takış, Gülnur Asadov, Ruslan Öztürk, Gülten Ünver, Olcay Ekinci, Gazanfer Neurodevelopmental Findings and Epilepsy in Malformations of Cortical Development |
title | Neurodevelopmental Findings and Epilepsy in Malformations of Cortical Development |
title_full | Neurodevelopmental Findings and Epilepsy in Malformations of Cortical Development |
title_fullStr | Neurodevelopmental Findings and Epilepsy in Malformations of Cortical Development |
title_full_unstemmed | Neurodevelopmental Findings and Epilepsy in Malformations of Cortical Development |
title_short | Neurodevelopmental Findings and Epilepsy in Malformations of Cortical Development |
title_sort | neurodevelopmental findings and epilepsy in malformations of cortical development |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8655965/ https://www.ncbi.nlm.nih.gov/pubmed/35005731 http://dx.doi.org/10.5152/TurkArchPediatr.2021.20148 |
work_keys_str_mv | AT saholcay neurodevelopmentalfindingsandepilepsyinmalformationsofcorticaldevelopment AT turkdogandilsad neurodevelopmentalfindingsandepilepsyinmalformationsofcorticaldevelopment AT kucukselda neurodevelopmentalfindingsandepilepsyinmalformationsofcorticaldevelopment AT takısgulnur neurodevelopmentalfindingsandepilepsyinmalformationsofcorticaldevelopment AT asadovruslan neurodevelopmentalfindingsandepilepsyinmalformationsofcorticaldevelopment AT ozturkgulten neurodevelopmentalfindingsandepilepsyinmalformationsofcorticaldevelopment AT unverolcay neurodevelopmentalfindingsandepilepsyinmalformationsofcorticaldevelopment AT ekincigazanfer neurodevelopmentalfindingsandepilepsyinmalformationsofcorticaldevelopment |