Cargando…
Development of an Oxidative Phosphorylation-Related and Immune Microenvironment Prognostic Signature in Uterine Corpus Endometrial Carcinoma
Background: As the fourth most common malignant tumors in women, uterine corpus endometrial carcinoma (UCEC) requires novel and reliable biomarkers for prognosis prediction to improve the overall survival. Oxidative phosphorylation (OXPHOS) is found to be strongly correlated with the progression of...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8655987/ https://www.ncbi.nlm.nih.gov/pubmed/34901000 http://dx.doi.org/10.3389/fcell.2021.753004 |
_version_ | 1784612190782750720 |
---|---|
author | Liu, Jinhui Chen, Tian Yang, Min Zhong, Zihang Ni, Senmiao Yang, Sheng Shao, Fang Cai, Lixin Bai, Jianling Yu, Hao |
author_facet | Liu, Jinhui Chen, Tian Yang, Min Zhong, Zihang Ni, Senmiao Yang, Sheng Shao, Fang Cai, Lixin Bai, Jianling Yu, Hao |
author_sort | Liu, Jinhui |
collection | PubMed |
description | Background: As the fourth most common malignant tumors in women, uterine corpus endometrial carcinoma (UCEC) requires novel and reliable biomarkers for prognosis prediction to improve the overall survival. Oxidative phosphorylation (OXPHOS) is found to be strongly correlated with the progression of tumor. Here, we aimed to construct an OXPHOS-related and immune microenvironment prognostic signature to stratify UCEC patients for optimization of treatment strategies. Method: Prognosis-associated OXPHOS-related differentially expressed genes were identified by multivariable Cox regression from TCGA–UCEC cohort. Based on the candidate genes, an OXPHOS-related prognostic signature was constructed by the train set data and verified by the entire set. When integrated with relevant clinical characteristics, a nomogram was also created for clinical application. Through comparison of tumor microenvironment between different risk groups, the underlying mechanism of the model and the inner correlation between immune microenvironment and energy metabolism were further investigated. Results: An OXPHOS-related signature containing ATP5IF1, COX6B1, FOXP3, and NDUFB11 was constructed and had better predictive ability compared with other recently published signatures in UCEC. Patients with lower risk score showed higher immune cell infiltration, higher ESTIMATE score (p = 2.808E−18), lower tumor purity (p = 2.808E−18), higher immunophenoscores (IPSs) (p < 0.05), lower expression of mismatch repair (MMR) proteins (p < 0.05), higher microsatellite instability (MSI), lower expression of markers of N6-methyladenosine (m6A) mRNA methylation regulators, higher tumor mutation burden (TMB) (p = 1.278E−9), and more sensitivity to immune checkpoint blockade (ICB) (p < 0.001) and chemotherapy drugs, thus, possessing improved prognosis. Conclusion: An OXPHOS-related and immune microenvironment prognostic signature classifying EC patients into different risk subsets was constructed in our study, which could be used to predict the prognosis of patients and help to select a specific subset of patients who might benefit from immunotherapy and chemotherapy, thus, improving the overall survival rate of UCEC. These findings may contribute to the discovery of novel and robust biomarkers or target therapy in UCEC and give new insights into the molecular mechanism of tumorigenesis and progression of UCEC. |
format | Online Article Text |
id | pubmed-8655987 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-86559872021-12-10 Development of an Oxidative Phosphorylation-Related and Immune Microenvironment Prognostic Signature in Uterine Corpus Endometrial Carcinoma Liu, Jinhui Chen, Tian Yang, Min Zhong, Zihang Ni, Senmiao Yang, Sheng Shao, Fang Cai, Lixin Bai, Jianling Yu, Hao Front Cell Dev Biol Cell and Developmental Biology Background: As the fourth most common malignant tumors in women, uterine corpus endometrial carcinoma (UCEC) requires novel and reliable biomarkers for prognosis prediction to improve the overall survival. Oxidative phosphorylation (OXPHOS) is found to be strongly correlated with the progression of tumor. Here, we aimed to construct an OXPHOS-related and immune microenvironment prognostic signature to stratify UCEC patients for optimization of treatment strategies. Method: Prognosis-associated OXPHOS-related differentially expressed genes were identified by multivariable Cox regression from TCGA–UCEC cohort. Based on the candidate genes, an OXPHOS-related prognostic signature was constructed by the train set data and verified by the entire set. When integrated with relevant clinical characteristics, a nomogram was also created for clinical application. Through comparison of tumor microenvironment between different risk groups, the underlying mechanism of the model and the inner correlation between immune microenvironment and energy metabolism were further investigated. Results: An OXPHOS-related signature containing ATP5IF1, COX6B1, FOXP3, and NDUFB11 was constructed and had better predictive ability compared with other recently published signatures in UCEC. Patients with lower risk score showed higher immune cell infiltration, higher ESTIMATE score (p = 2.808E−18), lower tumor purity (p = 2.808E−18), higher immunophenoscores (IPSs) (p < 0.05), lower expression of mismatch repair (MMR) proteins (p < 0.05), higher microsatellite instability (MSI), lower expression of markers of N6-methyladenosine (m6A) mRNA methylation regulators, higher tumor mutation burden (TMB) (p = 1.278E−9), and more sensitivity to immune checkpoint blockade (ICB) (p < 0.001) and chemotherapy drugs, thus, possessing improved prognosis. Conclusion: An OXPHOS-related and immune microenvironment prognostic signature classifying EC patients into different risk subsets was constructed in our study, which could be used to predict the prognosis of patients and help to select a specific subset of patients who might benefit from immunotherapy and chemotherapy, thus, improving the overall survival rate of UCEC. These findings may contribute to the discovery of novel and robust biomarkers or target therapy in UCEC and give new insights into the molecular mechanism of tumorigenesis and progression of UCEC. Frontiers Media S.A. 2021-11-25 /pmc/articles/PMC8655987/ /pubmed/34901000 http://dx.doi.org/10.3389/fcell.2021.753004 Text en Copyright © 2021 Liu, Chen, Yang, Zhong, Ni, Yang, Shao, Cai, Bai and Yu. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Cell and Developmental Biology Liu, Jinhui Chen, Tian Yang, Min Zhong, Zihang Ni, Senmiao Yang, Sheng Shao, Fang Cai, Lixin Bai, Jianling Yu, Hao Development of an Oxidative Phosphorylation-Related and Immune Microenvironment Prognostic Signature in Uterine Corpus Endometrial Carcinoma |
title | Development of an Oxidative Phosphorylation-Related and Immune Microenvironment Prognostic Signature in Uterine Corpus Endometrial Carcinoma |
title_full | Development of an Oxidative Phosphorylation-Related and Immune Microenvironment Prognostic Signature in Uterine Corpus Endometrial Carcinoma |
title_fullStr | Development of an Oxidative Phosphorylation-Related and Immune Microenvironment Prognostic Signature in Uterine Corpus Endometrial Carcinoma |
title_full_unstemmed | Development of an Oxidative Phosphorylation-Related and Immune Microenvironment Prognostic Signature in Uterine Corpus Endometrial Carcinoma |
title_short | Development of an Oxidative Phosphorylation-Related and Immune Microenvironment Prognostic Signature in Uterine Corpus Endometrial Carcinoma |
title_sort | development of an oxidative phosphorylation-related and immune microenvironment prognostic signature in uterine corpus endometrial carcinoma |
topic | Cell and Developmental Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8655987/ https://www.ncbi.nlm.nih.gov/pubmed/34901000 http://dx.doi.org/10.3389/fcell.2021.753004 |
work_keys_str_mv | AT liujinhui developmentofanoxidativephosphorylationrelatedandimmunemicroenvironmentprognosticsignatureinuterinecorpusendometrialcarcinoma AT chentian developmentofanoxidativephosphorylationrelatedandimmunemicroenvironmentprognosticsignatureinuterinecorpusendometrialcarcinoma AT yangmin developmentofanoxidativephosphorylationrelatedandimmunemicroenvironmentprognosticsignatureinuterinecorpusendometrialcarcinoma AT zhongzihang developmentofanoxidativephosphorylationrelatedandimmunemicroenvironmentprognosticsignatureinuterinecorpusendometrialcarcinoma AT nisenmiao developmentofanoxidativephosphorylationrelatedandimmunemicroenvironmentprognosticsignatureinuterinecorpusendometrialcarcinoma AT yangsheng developmentofanoxidativephosphorylationrelatedandimmunemicroenvironmentprognosticsignatureinuterinecorpusendometrialcarcinoma AT shaofang developmentofanoxidativephosphorylationrelatedandimmunemicroenvironmentprognosticsignatureinuterinecorpusendometrialcarcinoma AT cailixin developmentofanoxidativephosphorylationrelatedandimmunemicroenvironmentprognosticsignatureinuterinecorpusendometrialcarcinoma AT baijianling developmentofanoxidativephosphorylationrelatedandimmunemicroenvironmentprognosticsignatureinuterinecorpusendometrialcarcinoma AT yuhao developmentofanoxidativephosphorylationrelatedandimmunemicroenvironmentprognosticsignatureinuterinecorpusendometrialcarcinoma |