Cargando…
Excellent effects and possible mechanisms of action of a new antibody–drug conjugate against EGFR-positive triple-negative breast cancer
BACKGROUND: Triple-negative breast cancer (TNBC) is the most aggressive subtype and occurs in approximately 15–20% of diagnosed breast cancers. TNBC is characterized by its highly metastatic and recurrent features, as well as a lack of specific targets and targeted therapeutics. Epidermal growth fac...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8656065/ https://www.ncbi.nlm.nih.gov/pubmed/34879870 http://dx.doi.org/10.1186/s40779-021-00358-9 |
Sumario: | BACKGROUND: Triple-negative breast cancer (TNBC) is the most aggressive subtype and occurs in approximately 15–20% of diagnosed breast cancers. TNBC is characterized by its highly metastatic and recurrent features, as well as a lack of specific targets and targeted therapeutics. Epidermal growth factor receptor (EGFR) is highly expressed in a variety of tumors, especially in TNBC. LR004-VC-MMAE is a new EGFR-targeting antibody–drug conjugate produced by our laboratory. This study aimed to evaluate its antitumor activities against EGFR-positive TNBC and further studied its possible mechanism of antitumor action. METHODS: LR004-VC-MMAE was prepared by coupling a cytotoxic payload (MMAE) to an anti-EGFR antibody (LR004) via a linker, and the drug-to-antibody ratio (DAR) was analyzed by HIC-HPLC. The gene expression of EGFR in a series of breast cancer cell lines was assessed using a publicly available microarray dataset (GSE41313) and Western blotting. MDA-MB-468 and MDA-MB-231 cells were treated with LR004-VC-MMAE (0, 0.0066, 0.066, 0.66, 6.6 nmol/L), and the inhibitory effects of LR004-VC-MMAE on cell proliferation were examined by CCK-8 and colony formation. The migration and invasion capacity of MDA-MB-468 and MDA-MB-231 cells were tested at different LR004-VC-MMAE concentrations (2.5 and 5 nmol/L) with wound healing and Transwell invasion assays. Flow cytometric analysis and tumorsphere-forming assays were used to detect the killing effects of LR004-VC-MMAE on cancer stem cells in MDA-MB-468 and MDA-MB-231 cells. The mouse xenograft models were also used to evaluate the antitumor efficacy of LR004-VC-MMAE in vivo. Briefly, BALB/c nude mice were subcutaneously inoculated with MDA-MB-468 or MDA-MB-231 cells. Then they were randomly divided into 4 groups (n = 6 per group) and treated with PBS, naked LR004 (10 mg/kg), LR004-VC-MMAE (10 mg/kg), or doxorubicin, respectively. Tumor sizes and the body weights of mice were measured every 4 days. The effects of LR004-VC-MMAE on apoptosis and cell cycle distribution were analyzed by flow cytometry. Western blotting was used to detect the effects of LR004-VC-MMAE on EGFR, ERK, MEK phosphorylation and tumor stemness marker gene expression. RESULTS: LR004-VC-MMAE with a DAR of 4.02 were obtained. The expression of EGFR was found to be significantly higher in TNBC cells compared with non-TNBC cells (P < 0.01). LR004-VC-MMAE inhibited the proliferation of EGFR-positive TNBC cells, and the IC(50) values of MDA-MB-468 and MDA-MB-231 cells treated with LR004-VC-MMAE for 72 h were (0.13 ± 0.02) nmol/L and (0.66 ± 0.06) nmol/L, respectively, which were significantly lower than that of cells treated with MMAE [(3.20 ± 0.60) nmol/L, P < 0.01, and (6.60 ± 0.50) nmol/L, P < 0.001]. LR004-VC-MMAE effectively inhibited migration and invasion of MDA-MB-468 and MDA-MB-231 cells. Moreover, LR004-VC-MMAE also killed tumor stem cells in EGFR-positive TNBC cells and impaired their tumorsphere-forming ability. In TNBC xenograft models, LR004-VC-MMAE at 10 mg/kg significantly suppressed tumor growth and achieved complete tumor regression on day 36. Surprisingly, tumor recurrence was not observed until the end of the experiment on day 52. In a mechanistic study, we found that LR004-VC-MMAE significantly induced cell apoptosis and cell cycle arrest at G(2)/M phase in MDA-MB-468 [(34 ± 5)% vs. (12 ± 2)%, P < 0.001] and MDA-MB-231 [(27 ± 4)% vs. (18 ± 3)%, P < 0.01] cells. LR004-VC-MMAE also inhibited the activation of EGFR signaling and the expression of cancer stemness marker genes such as Oct4, Sox2, KLF4 and EpCAM. CONCLUSIONS: LR004-VC-MMAE showed effective antitumor activity by inhibiting the activation of EGFR signaling and the expression of cancer stemness marker genes. It might be a promising therapeutic candidate and provides a potential therapeutic avenue for the treatment of EGFR-positive TNBC. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40779-021-00358-9. |
---|