Cargando…

Reversibility of clinical and computed tomographic lesions mimicking pulmonary fibrosis in a young cat

BACKGROUND: In humans with idiopathic pulmonary fibrosis (IPF), specific thoracic computed tomographic (CT) features in the correct clinical context may be used in lieu of histologic examination. Cats develop an IPF-like condition with similar features to humans. As few cats have invasive lung biops...

Descripción completa

Detalles Bibliográficos
Autores principales: Stavri, Alba, Masseau, Isabelle, Reinero, Carol R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8656078/
https://www.ncbi.nlm.nih.gov/pubmed/34886851
http://dx.doi.org/10.1186/s12917-021-03081-8
Descripción
Sumario:BACKGROUND: In humans with idiopathic pulmonary fibrosis (IPF), specific thoracic computed tomographic (CT) features in the correct clinical context may be used in lieu of histologic examination. Cats develop an IPF-like condition with similar features to humans. As few cats have invasive lung biopsies, CT has appeal as a surrogate diagnostic, showing features consistent with architectural remodeling supporting “end-stage lung”. CASE PRESENTATION: A 1-year-old female spayed Domestic Shorthair cat presenting with progressive respiratory clinical signs and thoracic CT changes (reticular pattern, parenchymal bands, subpleural interstitial thickening, pleural fissure thickening, subpleural lines and regions of increased attenuation with traction bronchiectasis and architectural distortion) consistent with reports of IPF was given a grave prognosis for long-term survival. The cat was treated with prednisolone, fenbendazole, pradofloxacin and clindamycin. Five months later, while still receiving an anti-inflammatory dose of prednisolone, the cat was re-evaluated with owner-reported absent respiratory clinical signs. Thoracic CT demonstrated resolution of lung patterns consistent with fibrosis. CONCLUSIONS: Fibrotic lung disease is irreversible. Despite this cat having compatible progressive respiratory signs and associated lung patterns on thoracic CT scan, these abnormalities resolved with non-specific therapy and time, negating the possibility of IPF. While the cause of the distinct CT lesions that ultimately resolved was not determined, infection was suspected. Experimental Toxocara cati infection shows overlapping CT features as this cat and is considered a treatable disease. Improvement of CT lesions months after experimental heartworm-associated respiratory disease in cats has been documented. Reversibility of lesions suggests inflammation rather than fibrosis was the cause of the thoracic CT lesions. This cat serves as a lesson that although thoracic CT has been advocated as a surrogate for histopathology in people with IPF, additional studies in cats are needed to integrate CT findings with signalment, other clinicopathologic features and therapeutic response before providing a diagnosis or prognosis of fibrotic lung disease.