Cargando…
Stereochemical Assignment and Absolute Abundance of Nonproteinogenic Amino Acid Homoarginine in Marine Sponges
[Image: see text] Together with arginine, the nonproteinogenic amino acid homoarginine is a substrate for the production of vasodilator nitric oxide in the human body. In marine sponges, homoarginine has been postulated to serve as a precursor for the biosynthesis of pyrrole–imidazole alkaloid and b...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8656204/ https://www.ncbi.nlm.nih.gov/pubmed/34901671 http://dx.doi.org/10.1021/acsomega.1c05685 |
Sumario: | [Image: see text] Together with arginine, the nonproteinogenic amino acid homoarginine is a substrate for the production of vasodilator nitric oxide in the human body. In marine sponges, homoarginine has been postulated to serve as a precursor for the biosynthesis of pyrrole–imidazole alkaloid and bromotyrosine alkaloid classes of natural products. The absolute abundance of homoarginine, its abundance relative to arginine, and its stereochemical assignment in marine sponges are not known. Here, using stable isotope dilution mass spectrometry, we quantify the absolute abundances of homoarginine and arginine in marine sponges. We find that the abundance of homoarginine is highly variable and can far exceed the concentration of arginine, even in sponges where incorporation of homoarginine in natural products cannot be rationalized. The [homoarginine]/[arginine] ratio in marine sponges is greater than that in human analytes. By derivatization of sponge extracts with Marfey’s reagent and comparison with authentic standards, we determine the l-isomer of homoarginine to be exclusively present in sponges. Our results shed light on the presence of the high abundance of homoarginine in marine sponge metabolomes and provide the foundation to investigate the biosynthetic routes and physiological roles of this nonproteinogenic amino acid in sponge physiology. |
---|