Cargando…
Screening Referable Diabetic Retinopathy Using a Semi-automated Deep Learning Algorithm Assisted Approach
Purpose: To assess the accuracy and efficacy of a semi-automated deep learning algorithm (DLA) assisted approach to detect vision-threatening diabetic retinopathy (DR). Methods: We developed a two-step semi-automated DLA-assisted approach to grade fundus photographs for vision-threatening referable...
Autores principales: | Wang, Yueye, Shi, Danli, Tan, Zachary, Niu, Yong, Jiang, Yu, Xiong, Ruilin, Peng, Guankai, He, Mingguang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8656222/ https://www.ncbi.nlm.nih.gov/pubmed/34901058 http://dx.doi.org/10.3389/fmed.2021.740987 |
Ejemplares similares
-
A Deep Learning–Based Fully Automated Program for Choroidal Structure Analysis Within the Region of Interest in Myopic Children
por: Xuan, Meng, et al.
Publicado: (2023) -
Deep Learning Algorithm for Automated Diagnosis of Retinopathy of Prematurity Plus Disease
por: Tan, Zachary, et al.
Publicado: (2019) -
A self-adaptive deep learning method for automated eye laterality detection based on color fundus photography
por: Liu, Chi, et al.
Publicado: (2019) -
Translation of Color Fundus Photography into Fluorescein Angiography Using Deep Learning for Enhanced Diabetic Retinopathy Screening
por: Shi, Danli, et al.
Publicado: (2023) -
A Deep Learning System for Fully Automated Retinal Vessel Measurement in High Throughput Image Analysis
por: Shi, Danli, et al.
Publicado: (2022)