Cargando…
Segmentation of Cerebral Small Vessel Diseases-White Matter Hyperintensities Based on a Deep Learning System
Objective: Reliable quantification of white matter hyperintensities (WHMs) resulting from cerebral small vessel diseases (CSVD) is essential for understanding their clinical impact. We aim to develop and clinically validate a deep learning system for automatic segmentation of CSVD-WMH from fluid-att...
Autores principales: | Shan, Wei, Duan, Yunyun, Zheng, Yu, Wu, Zhenzhou, Chan, Shang Wei, Wang, Qun, Gao, Peiyi, Liu, Yaou, He, Kunlun, Wang, Yongjun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8656685/ https://www.ncbi.nlm.nih.gov/pubmed/34901045 http://dx.doi.org/10.3389/fmed.2021.681183 |
Ejemplares similares
-
Primary Categorizing and Masking Cerebral Small Vessel Disease Based on “Deep Learning System”
por: Duan, Yunyun, et al.
Publicado: (2020) -
Automatic segmentation of white matter hyperintensities and correlation analysis for cerebral small vessel disease
por: Xu, Bin, et al.
Publicado: (2023) -
White matter hyperintensities segmentation using an ensemble of neural networks
por: Li, Xinxin, et al.
Publicado: (2021) -
Cerebral Microbleed Automatic Detection System Based on the “Deep Learning”
por: Fan, Pingping, et al.
Publicado: (2022) -
Characterizing the penumbras of white matter hyperintensities in patients with cerebral small vessel disease
por: Wang, Xin, et al.
Publicado: (2023)