Cargando…
Adaptive Initialization Method for K-Means Algorithm
The K-means algorithm is a widely used clustering algorithm that offers simplicity and efficiency. However, the traditional K-means algorithm uses a random method to determine the initial cluster centers, which make clustering results prone to local optima and then result in worse clustering perform...
Autores principales: | Yang, Jie, Wang, Yu-Kai, Yao, Xin, Lin, Chin-Teng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8656690/ https://www.ncbi.nlm.nih.gov/pubmed/34901837 http://dx.doi.org/10.3389/frai.2021.740817 |
Ejemplares similares
-
A block cipher algorithm identification scheme based on hybrid k-nearest neighbor and random forest algorithm
por: Yuan, Ke, et al.
Publicado: (2022) -
MeaningBERT: assessing meaning preservation between sentences
por: Beauchemin, David, et al.
Publicado: (2023) -
An internet traffic classification method based on echo state network and improved salp swarm algorithm
por: Zhang, Meijia, et al.
Publicado: (2022) -
Solving the elusiveness of word meanings: two arguments for a continuous meaning space for language
por: Piñango, Maria M.
Publicado: (2023) -
Intelligent Multirobot Navigation and Arrival-Time Control Using a Scalable PSO-Optimized Hierarchical Controller
por: Chang, Yu-Cheng, et al.
Publicado: (2020)