Cargando…
Artificial Intelligence Algorithms in Visual Evoked Potential-Based Brain-Computer Interfaces for Motor Rehabilitation Applications: Systematic Review and Future Directions
Brain-Computer Interface (BCI) is a technology that uses electroencephalographic (EEG) signals to control external devices, such as Functional Electrical Stimulation (FES). Visual BCI paradigms based on P300 and Steady State Visually Evoked potentials (SSVEP) have shown high potential for clinical p...
Autores principales: | Gutierrez-Martinez, Josefina, Mercado-Gutierrez, Jorge A., Carvajal-Gámez, Blanca E., Rosas-Trigueros, Jorge L., Contreras-Martinez, Adrian E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8656949/ https://www.ncbi.nlm.nih.gov/pubmed/34899220 http://dx.doi.org/10.3389/fnhum.2021.772837 |
Ejemplares similares
-
Functional electrical stimulation therapy controlled by a P300-based brain–computer interface, as a therapeutic alternative for upper limb motor function recovery in chronic post-stroke patients. A non-randomized pilot study
por: Ramirez-Nava, Ana G., et al.
Publicado: (2023) -
Analysis of Multifocal Visual Evoked Potentials Using Artificial Intelligence Algorithms
por: Klistorner, Samuel, et al.
Publicado: (2022) -
Editorial: The application of artificial intelligence in brain-computer interface and neural system rehabilitation
por: Xu, Fangzhou, et al.
Publicado: (2023) -
Artificial intelligence and machine learning in motor recovery: A rehabilitation medicine perspective
por: Swarnakar, Raktim, et al.
Publicado: (2023) -
Editorial: Artificial intelligence in brain-computer interfaces and neuroimaging for neuromodulation and neurofeedback
por: Ponce, Hiram, et al.
Publicado: (2022)