Cargando…
Reconstructing Missing and Anomalous Data Collected from High-Frequency In-Situ Sensors in Fresh Waters
In situ sensors that collect high-frequency data are used increasingly to monitor aquatic environments. These sensors are prone to technical errors, resulting in unrecorded observations and/or anomalous values that are subsequently removed and create gaps in time series data. We present a framework...
Autores principales: | Kermorvant, Claire, Liquet, Benoit, Litt, Guy, Jones, Jeremy B., Mengersen, Kerrie, Peterson, Erin E., Hyndman, Rob J., Leigh, Catherine |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8657025/ https://www.ncbi.nlm.nih.gov/pubmed/34886529 http://dx.doi.org/10.3390/ijerph182312803 |
Ejemplares similares
-
Understanding links between water-quality variables and nitrate concentration in freshwater streams using high frequency sensor data
por: Kermorvant, Claire, et al.
Publicado: (2023) -
Predicting sediment and nutrient concentrations from high-frequency water-quality data
por: Leigh, Catherine, et al.
Publicado: (2019) -
SMOTE-CD: SMOTE for compositional data
por: Nguyen, Teo, et al.
Publicado: (2023) -
Missing in space: an evaluation of imputation methods for missing data in spatial analysis of risk factors for type II diabetes
por: Baker, Jannah, et al.
Publicado: (2014) -
Using decision trees to understand structure in missing data
por: Tierney, Nicholas J, et al.
Publicado: (2015)