Cargando…
Dose-Response Effect and Dose-Toxicity in Stereotactic Radiotherapy for Brain Metastases: A Review
SIMPLE SUMMARY: Brain metastases are one of the most frequent complications for cancer patients. Stereotactic radiosurgery is considered a cornerstone treatment for patients with limited brain metastases and the ideal dose and fractionation schedule still remain unknown. The aim of this literature r...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8657210/ https://www.ncbi.nlm.nih.gov/pubmed/34885193 http://dx.doi.org/10.3390/cancers13236086 |
Sumario: | SIMPLE SUMMARY: Brain metastases are one of the most frequent complications for cancer patients. Stereotactic radiosurgery is considered a cornerstone treatment for patients with limited brain metastases and the ideal dose and fractionation schedule still remain unknown. The aim of this literature review is to discuss the dose-effect relation in brain metastases treated by stereotactic radiosurgery, accounting for fractionation and technical considerations. ABSTRACT: For more than two decades, stereotactic radiosurgery has been considered a cornerstone treatment for patients with limited brain metastases. Historically, radiosurgery in a single fraction has been the standard of care but recent technical advances have also enabled the delivery of hypofractionated stereotactic radiotherapy for dedicated situations. Only few studies have investigated the efficacy and toxicity profile of different hypofractionated schedules but, to date, the ideal dose and fractionation schedule still remains unknown. Moreover, the linear-quadratic model is being debated regarding high dose per fraction. Recent studies shown the radiation schedule is a critical factor in the immunomodulatory responses. The aim of this literature review was to discuss the dose–effect relation in brain metastases treated by stereotactic radiosurgery accounting for fractionation and technical considerations. Efficacy and toxicity data were analyzed in the light of recent published data. Only retrospective and heterogeneous data were available. We attempted to present the relevant data with caution. A [Formula: see text] of 40 to 50 Gy seems associated with a 12-month local control rate >70%. A [Formula: see text] of 50 to 60 Gy seems to achieve a 12-month local control rate at least of 80% at 12 months. In the brain metastases radiosurgery series, for single-fraction schedule, a V12 Gy < 5 to 10 cc was associated to 7.1–22.5% radionecrosis rate. For three-fractions schedule, V18 Gy < 26–30 cc, V21 Gy < 21 cc and V23 Gy < 5–7 cc were associated with about 0–14% radionecrosis rate. For five-fractions schedule, V30 Gy < 10–30 cc, V 28.8 Gy < 3–7 cc and V25 Gy < 16 cc were associated with about 2–14% symptomatic radionecrosis rate. There are still no prospective trials comparing radiosurgery to fractionated stereotactic irradiation. |
---|