Cargando…

Impact of Interobserver Variability in Manual Segmentation of Non-Small Cell Lung Cancer (NSCLC) Applying Low-Rank Radiomic Representation on Computed Tomography

SIMPLE SUMMARY: Discovery of predictive and prognostic radiomic features in cancer is currently of great interest to the radiologic and oncologic community. Tumor phenotypic and prognostic information can be obtained by extracting features on tumor segmentations, and it is typically imaging analysts...

Descripción completa

Detalles Bibliográficos
Autores principales: Hershman, Michelle, Yousefi, Bardia, Serletti, Lacey, Galperin-Aizenberg, Maya, Roshkovan, Leonid, Luna, José Marcio, Thompson, Jeffrey C., Aggarwal, Charu, Carpenter, Erica L., Kontos, Despina, Katz, Sharyn I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8657389/
https://www.ncbi.nlm.nih.gov/pubmed/34885094
http://dx.doi.org/10.3390/cancers13235985
Descripción
Sumario:SIMPLE SUMMARY: Discovery of predictive and prognostic radiomic features in cancer is currently of great interest to the radiologic and oncologic community. Tumor phenotypic and prognostic information can be obtained by extracting features on tumor segmentations, and it is typically imaging analysts, physician trainees, and attending physicians who provide these labeled datasets for analysis. The potential impact of level and type of specialty training on interobserver variability in manual segmentation of NSCLC was examined. Although there was some variability in segmentation between readers, the subsequently extracted radiomic features were overall well correlated. High fidelity radiomic feature extraction relies on accurate feature extraction from imaging that produce robust prognostic and predictive radiomic NSCLC biomarkers. This study concludes that this goal can be obtained using segmenters of different levels of training and clinical experience. ABSTRACT: This study tackles interobserver variability with respect to specialty training in manual segmentation of non-small cell lung cancer (NSCLC). Four readers included for segmentation are: a data scientist (BY), a medical student (LS), a radiology trainee (MH), and a specialty-trained radiologist (SK) for a total of 293 patients from two publicly available databases. Sørensen–Dice (SD) coefficients and low rank Pearson correlation coefficients (CC) of 429 radiomics were calculated to assess interobserver variability. Cox proportional hazard (CPH) models and Kaplan-Meier (KM) curves of overall survival (OS) prediction for each dataset were also generated. SD and CC for segmentations demonstrated high similarities, yielding, SD: 0.79 and CC: 0.92 (BY-SK), SD: 0.81 and CC: 0.83 (LS-SK), and SD: 0.84 and CC: 0.91 (MH-SK) in average for both databases, respectively. OS through the maximal CPH model for the two datasets yielded c-statistics of 0.7 (95% CI) and 0.69 (95% CI), while adding radiomic and clinical variables (sex, stage/morphological status, and histology) together. KM curves also showed significant discrimination between high- and low-risk patients (p-value < 0.005). This supports that readers’ level of training and clinical experience may not significantly influence the ability to extract accurate radiomic features for NSCLC on CT. This potentially allows flexibility in the training required to produce robust prognostic imaging biomarkers for potential clinical translation.