Cargando…
Unsupervised Representation Learning for Proteochemometric Modeling
In silico protein–ligand binding prediction is an ongoing area of research in computational chemistry and machine learning based drug discovery, as an accurate predictive model could greatly reduce the time and resources necessary for the detection and prioritization of possible drug candidates. Pro...
Autores principales: | Kim, Paul T., Winter, Robin, Clevert, Djork-Arné |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8657702/ https://www.ncbi.nlm.nih.gov/pubmed/34884688 http://dx.doi.org/10.3390/ijms222312882 |
Ejemplares similares
-
Learning continuous and data-driven molecular descriptors by translating equivalent chemical representations
por: Winter, Robin, et al.
Publicado: (2018) -
Img2Mol – accurate SMILES recognition from molecular graphical depictions
por: Clevert, Djork-Arné, et al.
Publicado: (2021) -
Neuraldecipher – reverse-engineering extended-connectivity fingerprints (ECFPs) to their molecular structures
por: Le, Tuan, et al.
Publicado: (2020) -
Proteochemometric modeling of HIV protease susceptibility
por: Lapins, Maris, et al.
Publicado: (2008) -
Proteochemometric modeling in a Bayesian framework
por: Cortes-Ciriano, Isidro, et al.
Publicado: (2014)