Cargando…
Reprogramming reactive glia into interneurons reduces chronic seizure activity in a mouse model of mesial temporal lobe epilepsy
Reprogramming brain-resident glial cells into clinically relevant induced neurons (iNs) is an emerging strategy toward replacing lost neurons and restoring lost brain functions. A fundamental question is now whether iNs can promote functional recovery in pathological contexts. We addressed this ques...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8657801/ https://www.ncbi.nlm.nih.gov/pubmed/34592167 http://dx.doi.org/10.1016/j.stem.2021.09.002 |
_version_ | 1784612585724706816 |
---|---|
author | Lentini, Célia d’Orange, Marie Marichal, Nicolás Trottmann, Marie-Madeleine Vignoles, Rory Foucault, Louis Verrier, Charlotte Massera, Céline Raineteau, Olivier Conzelmann, Karl-Klaus Rival-Gervier, Sylvie Depaulis, Antoine Berninger, Benedikt Heinrich, Christophe |
author_facet | Lentini, Célia d’Orange, Marie Marichal, Nicolás Trottmann, Marie-Madeleine Vignoles, Rory Foucault, Louis Verrier, Charlotte Massera, Céline Raineteau, Olivier Conzelmann, Karl-Klaus Rival-Gervier, Sylvie Depaulis, Antoine Berninger, Benedikt Heinrich, Christophe |
author_sort | Lentini, Célia |
collection | PubMed |
description | Reprogramming brain-resident glial cells into clinically relevant induced neurons (iNs) is an emerging strategy toward replacing lost neurons and restoring lost brain functions. A fundamental question is now whether iNs can promote functional recovery in pathological contexts. We addressed this question in the context of therapy-resistant mesial temporal lobe epilepsy (MTLE), which is associated with hippocampal seizures and degeneration of hippocampal GABAergic interneurons. Using a MTLE mouse model, we show that retrovirus-driven expression of Ascl1 and Dlx2 in reactive hippocampal glia in situ, or in cortical astroglia grafted in the epileptic hippocampus, causes efficient reprogramming into iNs exhibiting hallmarks of interneurons. These induced interneurons functionally integrate into epileptic networks and establish GABAergic synapses onto dentate granule cells. MTLE mice with GABAergic iNs show a significant reduction in both the number and cumulative duration of spontaneous recurrent hippocampal seizures. Thus glia-to-neuron reprogramming is a potential disease-modifying strategy to reduce seizures in therapy-resistant epilepsy. |
format | Online Article Text |
id | pubmed-8657801 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-86578012021-12-21 Reprogramming reactive glia into interneurons reduces chronic seizure activity in a mouse model of mesial temporal lobe epilepsy Lentini, Célia d’Orange, Marie Marichal, Nicolás Trottmann, Marie-Madeleine Vignoles, Rory Foucault, Louis Verrier, Charlotte Massera, Céline Raineteau, Olivier Conzelmann, Karl-Klaus Rival-Gervier, Sylvie Depaulis, Antoine Berninger, Benedikt Heinrich, Christophe Cell Stem Cell Article Reprogramming brain-resident glial cells into clinically relevant induced neurons (iNs) is an emerging strategy toward replacing lost neurons and restoring lost brain functions. A fundamental question is now whether iNs can promote functional recovery in pathological contexts. We addressed this question in the context of therapy-resistant mesial temporal lobe epilepsy (MTLE), which is associated with hippocampal seizures and degeneration of hippocampal GABAergic interneurons. Using a MTLE mouse model, we show that retrovirus-driven expression of Ascl1 and Dlx2 in reactive hippocampal glia in situ, or in cortical astroglia grafted in the epileptic hippocampus, causes efficient reprogramming into iNs exhibiting hallmarks of interneurons. These induced interneurons functionally integrate into epileptic networks and establish GABAergic synapses onto dentate granule cells. MTLE mice with GABAergic iNs show a significant reduction in both the number and cumulative duration of spontaneous recurrent hippocampal seizures. Thus glia-to-neuron reprogramming is a potential disease-modifying strategy to reduce seizures in therapy-resistant epilepsy. Cell Press 2021-12-02 /pmc/articles/PMC8657801/ /pubmed/34592167 http://dx.doi.org/10.1016/j.stem.2021.09.002 Text en © 2021 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lentini, Célia d’Orange, Marie Marichal, Nicolás Trottmann, Marie-Madeleine Vignoles, Rory Foucault, Louis Verrier, Charlotte Massera, Céline Raineteau, Olivier Conzelmann, Karl-Klaus Rival-Gervier, Sylvie Depaulis, Antoine Berninger, Benedikt Heinrich, Christophe Reprogramming reactive glia into interneurons reduces chronic seizure activity in a mouse model of mesial temporal lobe epilepsy |
title | Reprogramming reactive glia into interneurons reduces chronic seizure activity in a mouse model of mesial temporal lobe epilepsy |
title_full | Reprogramming reactive glia into interneurons reduces chronic seizure activity in a mouse model of mesial temporal lobe epilepsy |
title_fullStr | Reprogramming reactive glia into interneurons reduces chronic seizure activity in a mouse model of mesial temporal lobe epilepsy |
title_full_unstemmed | Reprogramming reactive glia into interneurons reduces chronic seizure activity in a mouse model of mesial temporal lobe epilepsy |
title_short | Reprogramming reactive glia into interneurons reduces chronic seizure activity in a mouse model of mesial temporal lobe epilepsy |
title_sort | reprogramming reactive glia into interneurons reduces chronic seizure activity in a mouse model of mesial temporal lobe epilepsy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8657801/ https://www.ncbi.nlm.nih.gov/pubmed/34592167 http://dx.doi.org/10.1016/j.stem.2021.09.002 |
work_keys_str_mv | AT lentinicelia reprogrammingreactivegliaintointerneuronsreduceschronicseizureactivityinamousemodelofmesialtemporallobeepilepsy AT dorangemarie reprogrammingreactivegliaintointerneuronsreduceschronicseizureactivityinamousemodelofmesialtemporallobeepilepsy AT marichalnicolas reprogrammingreactivegliaintointerneuronsreduceschronicseizureactivityinamousemodelofmesialtemporallobeepilepsy AT trottmannmariemadeleine reprogrammingreactivegliaintointerneuronsreduceschronicseizureactivityinamousemodelofmesialtemporallobeepilepsy AT vignolesrory reprogrammingreactivegliaintointerneuronsreduceschronicseizureactivityinamousemodelofmesialtemporallobeepilepsy AT foucaultlouis reprogrammingreactivegliaintointerneuronsreduceschronicseizureactivityinamousemodelofmesialtemporallobeepilepsy AT verriercharlotte reprogrammingreactivegliaintointerneuronsreduceschronicseizureactivityinamousemodelofmesialtemporallobeepilepsy AT masseraceline reprogrammingreactivegliaintointerneuronsreduceschronicseizureactivityinamousemodelofmesialtemporallobeepilepsy AT raineteauolivier reprogrammingreactivegliaintointerneuronsreduceschronicseizureactivityinamousemodelofmesialtemporallobeepilepsy AT conzelmannkarlklaus reprogrammingreactivegliaintointerneuronsreduceschronicseizureactivityinamousemodelofmesialtemporallobeepilepsy AT rivalgerviersylvie reprogrammingreactivegliaintointerneuronsreduceschronicseizureactivityinamousemodelofmesialtemporallobeepilepsy AT depaulisantoine reprogrammingreactivegliaintointerneuronsreduceschronicseizureactivityinamousemodelofmesialtemporallobeepilepsy AT berningerbenedikt reprogrammingreactivegliaintointerneuronsreduceschronicseizureactivityinamousemodelofmesialtemporallobeepilepsy AT heinrichchristophe reprogrammingreactivegliaintointerneuronsreduceschronicseizureactivityinamousemodelofmesialtemporallobeepilepsy |