Cargando…
Evaluation of Deep Neural Network ProSPr for Accurate Protein Distance Predictions on CASP14 Targets
The field of protein structure prediction has recently been revolutionized through the introduction of deep learning. The current state-of-the-art tool AlphaFold2 can predict highly accurate structures; however, it has a prohibitively long inference time for applications that require the folding of...
Autores principales: | Stern, Jacob, Hedelius, Bryce, Fisher, Olivia, Billings, Wendy M., Della Corte, Dennis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8657919/ https://www.ncbi.nlm.nih.gov/pubmed/34884640 http://dx.doi.org/10.3390/ijms222312835 |
Ejemplares similares
-
Training undergraduate research assistants with an outcome-oriented and skill-based mentoring strategy
por: Della Corte, Dennis, et al.
Publicado: (2022) -
Modeling SARS‐CoV‐2 proteins in the CASP‐commons experiment
por: Kryshtafovych, Andriy, et al.
Publicado: (2021) -
Improving deep learning-based protein distance prediction in CASP14
por: Guo, Zhiye, et al.
Publicado: (2021) -
Enrichment of extracellular vesicles from tissues of the central nervous system by PROSPR
por: Gallart-Palau, Xavier, et al.
Publicado: (2016) -
Improving protein tertiary structure prediction by deep learning and distance prediction in CASP14
por: Liu, Jian, et al.
Publicado: (2021)